Two-dimensional nickel cyano-bridged coordination polymer thermally derived potent electrocatalysts for alkaline hydrogen evolution reaction

文献信息

发布日期 2023-11-02
DOI 10.1039/D3TA04511K
影响因子 12.732
作者

Haitham M. El-Bery, Mohamed E. El-Khouly



摘要

Because of its sustainability and cleanliness, hydrogen has recently been a research focus as a potential fuel. One promising way to produce hydrogen is water electrolysis in an alkaline solution. However, this process requires much energy to split the H–OH bond and transfer multiple electrons/protons. To overcome this challenge, catalytic electrodes have been developed to reduce the energy needed and maintain sustainable water electrolysis. This study explores the potential of utilizing a two-dimensional nickel-based cyanide coordination polymer (2D Ni-CP) precursor to synthesize effective Ni-based inorganic nanostructured electrodes. Various types of electrodes, including Ni-O, Ni-S, Ni-Se, and Ni-P, are synthesized through direct thermal treatment of the coordination polymer. The performance of the as-prepared materials in the hydrogen evolution process (HER) in an alkaline medium is examined. Ni-P demonstrates the most promising HER performance with an overpotential of 266 mV at 10 mA cm−2 and a Tafel slope of 186 mV dec−1. These results are compared to those of the benchmark expensive and scarce Pt/C-40% catalyst (38 mV and 48 mV dec−1) examined under identical conditions. Additionally, Ni-P shows outstanding HER durability over four days, as reflected by chronopotentiometry measurements.

来源期刊

Journal of Materials Chemistry A

Journal of Materials Chemistry A
CiteScore: 19.5
自引率: 4.7%
年发文量: 2211

Journal of Materials Chemistry A, B & C cover high quality studies across all fields of materials chemistry. The journals focus on those theoretical or experimental studies that report new understanding, applications, properties and synthesis of materials. The journals have a strong history of publishing quality reports of interest to interdisciplinary communities and providing an efficient and rigorous service through peer review and publication. The journals are led by an international team of Editors-in-Chief and Associate Editors who are all active researchers in their fields. Journal of Materials Chemistry A, B & C are separated by the intended application of the material studied. Broadly, applications in energy and sustainability are of interest to Journal of Materials Chemistry A, applications in biology and medicine are of interest to Journal of Materials Chemistry B, and applications in optical, magnetic and electronic devices are of interest to Journal of Materials Chemistry C. More than one Journal of Materials Chemistry journal may be suitable for certain fields and researchers are encouraged to submit their paper to the journal that they feel best fits for their particular article. Example topic areas within the scope of Journal of Materials Chemistry A are listed below. This list is neither exhaustive nor exclusive. Artificial photosynthesis Batteries Carbon dioxide conversion Catalysis Fuel cells Gas capture/separation/storage Green/sustainable materials Hydrogen generation Hydrogen storage Photocatalysis Photovoltaics Self-cleaning materials Self-healing materials Sensors Supercapacitors Thermoelectrics Water splitting Water treatment

推荐供应商

美国股份有限公司梅佐
中国金华中能自动设备化有限公司
德国克劳迪乌斯·彼得斯集团
德国格斯特拉 AG
德国内部自动化有限公司
德国泰普
中国武汉八颗星生物科技有限公司
德国Mci-miritz柑橘配料有限公司
中国北京朗润时代环保科技有限公司
中国霸州路德精细化工有限公司
免责声明
本页面提供的学术期刊信息仅供参考和研究使用。我们与任何期刊出版商均无关联,也不处理投稿事宜。如有投稿相关咨询,请直接联系相关期刊出版商。
如发现页面信息有误,请发送邮件至 [email protected] 联系我们。我们将及时核实并处理您的问题。