Enhancing drilling mud performance through CMITS-modified formulations: rheological insights and performance optimization
文献信息
Maqsood Ahmad, Syahrir Ridha, Cajetan Chimezie Iferobia, Najeebullah Lashari
In the context of deep well drilling, the addition of functionalized additives into mud systems becomes imperative due to the adverse impact of elevated borehole temperatures and salts on conventional additives, causing them to compromise their intrinsic functionalities. Numerous biomaterials have undergone modifications and have been evaluated in drilling muds. However, the addition of dually modified tapioca starch in bentonite-free mud systems remains a notable gap within the existing literature. This study aims to examine the performance of dually modified carboxymethyl irradiated tapioca starch (CMITS) under high temperature and salt-containing conditions employing central composite design approach; the study evaluates the modified starch's impact on mud rheology, thermal stability, and salt resistance. The findings indicated that higher DS (0.66) and CMITS concentrations (8 ppb) improved plastic viscosity (PV), yield point (YP) and gel strength (GS), while increased salt and temperature decreased it, demonstrating the complex interplay of these factors on mud rheology. The developed empirical models suggested that DS 0.66 starch addition enhanced rheology, especially at elevated temperatures, demonstrating improved borehole cleaning potential, supported by quadratic model performance indicators in line with American Petroleum Institute (API) ranges. The optimized samples showed a non-Newtonian behavior, and Power-law model fitting yields promising results for improved cuttings transportation with starch additives.
相关文献
IF 6.222
The dilemma between acid and base catalysis in the synthesis of benzimidazole from o-phenylenediamine and carbon dioxide‡IF 6.222
Visible light-driven cross-coupling reactions of alkyl halides with phenylacetylene derivatives for C(sp3)–C(sp) bond formation catalyzed by a B12 complexIF 6.222
An overview of latest advances in exploring bioactive peptide hydrogels for neural tissue engineeringIF 6.843
Development of wound healing scaffolds with precisely-triggered sequential release of therapeutic nanoparticlesIF 6.843
Water-soluble pH-switchable cobalt complexes for aqueous symmetric redox flow batteriesIF 6.222
Surface structure-dependent electrocatalytic reduction of CO2 to C1 products on SnO2 catalystsIF 6.367
Co9S8 integrated into nitrogen/sulfur dual-doped carbon nanofibers as an efficient oxygen bifunctional electrocatalyst for Zn–air batteriesIF 6.367
In situ growth of all-inorganic perovskite nanocrystals on black phosphorus nanosheetsIF 6.222
Direct arylation polycondensation towards water/alcohol-soluble conjugated polymers as the electron transporting layers for organic solar cellsIF 6.222
来源期刊
RSC Advances

Chemistry fascinates us. This discipline is integral to life and impacts so many aspects of our world. The scope for RSC Advances is wide-ranging because we want to capture any research that can offer crucial insights and advance chemistry. RSC Advances papers should provide an insight that advances the chemistry field. Papers that contain little or no chemistry and are not considered to be of interest or relevance to the chemistry community are not within the scope of the journal. The criteria for publication are that the work must be high quality, well conducted and advance the development of the field. Articles submitted to the journal are evaluated by our international team of associate editors and reviewers for the overall quality and accuracy of the science presented. Download our full list of subject categories to see the range of topics we publish in RSC Advances. Please ensure you have considered the following points before submitting your manuscript. Does the work present an advance over the existing literature? Please supply a covering letter with your submission to demonstrate how the work is advancing the field over the existing literature Have you provided sufficient evidence/data to support your conclusions? Have you provided adequate characterisation data for your materials/compounds? (Please check the supporting information section to ensure that the necessary requirements have been met and copies of relevant spectra have been provided where necessary) Are the results discussed in the context of the literature? Are the references relevant and do they appropriately reflect the existing literature?