MXene-modified electrodes and electrolytes in dye-sensitized solar cells
文献信息
Sikandar Aftab, Muhammad Zahir Iqbal, Sajjad Hussain, Fahmid Kabir, Burragoni Sravanthi Goud, Muhammad Aslam, Fan Xu
Dye-sensitized solar cells (DSSCs) have attracted much attention as promising tools in renewable energy conversion technology. This is mainly because of their beneficial qualities, such as their impressive efficiency levels and low-cost fabrication techniques. An overview of MXene-modified electrodes in DSSCs is given in this review article. MXenes are two-dimensional (2D) transition metal carbides or nitrides with remarkable properties such as high conductivity and large surface area. MXenes’ properties make them an appealing material for various applications, including energy storage, catalysis, and electronic devices. MXene integration enhances ion transport, dye adsorption, and charge transport in DSSC electrodes. In-depth analysis of the use of 2D Mxene and integration with carbon nanotubes (CNTs), reduced graphene oxide (rGO), 2D MoS2, and hybrids like 2D–2D heterostructures for electrode modification in photovoltaics (PVs), including anodes, photoanodes, composite decorated electrodes, counter electrodes (CEs), and electrolytes, is provided in this review article. The effects on the performance metrics of various deposition techniques are discussed and assessed. The use of MXene-modified electrodes in DSSCs suggests potential for enhancing the performance and efficiency of these solar cells in general. The article examines this strategy's potential advantages and implications, illuminating the fascinating advancements in the area and emphasizing MXenes’ potential as a valuable substance for renewable energy applications. We also discuss the difficulties and potential benefits of using MXene-modified electrodes in DSSCs and emphasize the need for additional study to enhance stability, optimize MXene integration techniques, and enhance long-term device performance. The scalability and potential of MXene-based electrode modifications for commercial applications are also covered, addressing issues and prospects for the future, focusing on the necessity of more study. Electrodes modified with MXenes can improve DSSC performance and advance sustainable energy conversion.
相关文献
IF 6.222
Near infrared light activation of an injectable whole-cell cancer vaccine for cancer immunoprophylaxis and immunotherapyIF 6.843
A robust multifunctional ligand-controlled palladium-catalyzed carbonylation reaction in waterIF 6.222
Photoactivatable fluorophores for durable labelling of individual cellsIF 6.222
Visible light-driven cross-coupling reactions of alkyl halides with phenylacetylene derivatives for C(sp3)–C(sp) bond formation catalyzed by a B12 complexIF 6.222
Catalytic depolymerization of alkali lignin in ionic liquids on Pt-supported La2O3–SO42−/ZrO2 catalystsIF 6.367
Pulsed laser rusted stainless steel: a robust electrode material applied for energy storage and generation applicationsIF 6.367
Electrocatalytic cleavage of lignin model dimers using ruthenium supported on activated carbon clothIF 6.367
Carbon and carbon composites obtained using deep eutectic solvents and aqueous dilutions thereofIF 6.222
Highly efficient and durable III–V semiconductor-catalyst photocathodes via a transparent protection layerIF 6.367
来源期刊
Nanoscale

Nanoscale is a high-impact international journal, publishing high-quality research across nanoscience and nanotechnology. Nanoscale publishes a full mix of research articles on experimental and theoretical work, including reviews, communications, and full papers. Highly interdisciplinary, Nanoscale appeals to scientists, researchers and professionals interested in nanoscience and nanotechnology, quantum materials and quantum technology, including the areas of physics, chemistry, biology, medicine, materials, energy/environment, information technology, detection science, healthcare and drug discovery, and electronics. For publication in Nanoscale, papers must report high-quality reproducible new work that will be of significant general interest to the journal's wide international readership. Nanoscale is a collaborative venture between the Royal Society of Chemistry Publishing and a leading nanoscience research centre, the National Center for Nanoscience and Technology (NCNST) in Beijing, China. image block The journal publishes weekly issues, complementing and building on the nano content already published across the Royal Society of Chemistry Publishing journal portfolio. Since its launch in late 2009, Nanoscale has established itself as a platform for high-quality, cross-community research that bridges the various disciplines involved with nanoscience and nanotechnology, publishing important research from leading international research groups.