In vitro-simulated intestinal flora fermentation of Porphyra haitanensis polysaccharides obtained by different assisted extractions and their fermented products against HT-29 human colon cancer cells
文献信息
Zhiyu Liu, Shuji Liu
Herein, we studied the in vitro-simulated intestinal flora fermentation of Porphyra haitanensis polysaccharides (PHPs) with microwave, ultrasonic, ultra-high pressure-assisted extraction and the protective effect of their fermented products against HT-29 human colon cancer cells. The results showed that PHPs were largely degraded at the 18 h stage of ascending colon fermentation, further greatly increasing the contents of reducing sugars and short-chain fatty acids (p < 0.05). Particularly, the PHPs subjected to ultra-high pressure-assisted extraction (UHP-PHP) showed the highest reducing sugar content of 1.68 ± 0.01 mg mL−1 and butyric acid content of 410.77 ± 7.99 mmol mL−1. Moreover, UHP-PHP showed a better effect in increasing the ratio of Bacteroidetes/Firmicutes and decreasing the abundance of Proteobacteria and Escherichia coli. PHPs could protect against HT-29 cells by increasing the ROS levels in a concentration-dependent manner, especially UHP-PHP fermented in a descending colon for 24 h. This was related to the up-regulated apoptosis-related genes (Bax and Bak), down-regulated protein expression of Bcl-2 and activation of the p-AKT protein, thereby promoting the apoptosis of HT-29 cells. Our results can facilitate the modification of PHPs and their practical application in the development of intestinal health improving products.
相关文献
IF 6.367
The dilemma between acid and base catalysis in the synthesis of benzimidazole from o-phenylenediamine and carbon dioxide‡IF 6.222
Biomimetic hydrogels designed for cartilage tissue engineeringIF 6.843
Palladium-catalyzed silaborative carbocyclizations of 1,6-diynesIF 6.222
Nickel-containing N-doped carbon as effective electrocatalysts for the reduction of CO2 to CO in a continuous-flow electrolyzerIF 6.367
Sugar ketals as a platform molecule to overcome the limitation of converting biomass into green-hydrocarbons in a typical refineryIF 6.367
Microscopic insights into long-range 1D ordering in a dense semi-disordered molecular overlayerIF 6.222
Ultra-thin NiFeSe nanosheets as a highly efficient bifunctional electrocatalyst for overall water splittingIF 6.367
PEST (political, environmental, social & technical) analysis of the development of the waste-to-energy anaerobic digestion industry in China as a representative for developing countriesIF 6.367
Co-production of pure hydrogen, carbon dioxide and nitrogen in a 10 kW fixed-bed chemical looping systemIF 6.367
来源期刊
Food & Function

Food & Function provides a unique venue for physicists, chemists, biochemists, nutritionists and other food scientists to publish novel, cutting-edge, original research focussing on food, its nutrients and their relation to human health and nutrition. We welcome research describing the: Physical properties and structure of food and how this relates to sensory perception and human health Biochemical and physiological actions of food components Interactions between foods, gut microbiota and human physiology Nutritional and biological evaluation of food Clinical and population studies using food or food components Development of biomarkers of food intake and effects on human health We also welcome systematic reviews and meta-analyses of existing studies in the literature, provided these are objective and scientifically valid Food in this context is defined as materials of plant, animal or mineral origin, which are consumed orally (by humans) for pleasure and to sustain growth and vital processes. Examples of research topics that are of interest to be published in Food & Function are: Chemistry and physics of food components and digestion processes Relationship between the physical properties/structure of food and nutrition and human health - for example, impact of food matrix or processing on nutrient release and uptake Molecular properties and physiological effects of food components (nutrients, fibres, essential micronutrients, phytochemicals, bioactives, food substitutes, novel ingredients, allergens, flavours and fragrances) Nutritional and health effects of food including bioavailability and metabolism assessment of food components (nutrients, micronutrients and other microconstituents) Efficacy and mechanisms of food constituents in the body - including biomarkers of intakes, exposure and effects Impacts of foods/food components on gut microorganisms and human physiology - For example impact of fermented foods Role of nutrition and diet in human disease prevention and development Cellular and molecular effects/mechanisms of food/food components image block The following types of research are not within the scope of Food & Function: Research relating to traditional herbal medicines, medicinal plants or active compounds extracted from such plants (materials that are primarily consumed as medicine, i.e. the intended purpose is primarily to treat, cure or prevent a non-deficiency disease) or relating to foods not recognised as human diet contributors Animal nutrition research that is not primarily designed as a model to benefit human nutrition (for example, studies of growth/accretion, heat stress, weaning, ruminant digestion, meat quality, etc.) Treatments administered by non-oral routes such as injection (subcutaneous, intramuscular, intraperitoneal, etc.), dermal/transdermal, rectal, inhalation, nasal, etc. Exceptions are when such routes of administration are used for mechanistic/control purposes in the experimental design Pharmacological/pharmaceutical approaches: Encapsulation, emulsification and/or pure controlled release of compounds or bioactives that do not come directly from edible foods, such as dietary supplements - these are better suited to a pharmaceutical journal In vitro or in vivo studies with poorly defined (insufficiently characterised) extracts and studies without appropriate controls will not be considered Cells studies not considering the metabolism of food components ingested – for example, irrelevant exposure of cells to compounds not present in the body after absorption Manuscripts with only a fully theoretical/bioinformatic approach and without appropriate support from analytical evidence will not be considered for publication Studies focussing solely on food engineering, preservation and sustainable technologies – these can be published in our companion journal Sustainable Food Technology Pure food analysis - these can be published in Analytical Methods