Cooperative interactions between Veillonella ratti and Lactobacillus acidophilus ameliorate DSS-induced ulcerative colitis in mice
文献信息
Na Li, Hejing Wang, Huizhu Zhao, Mengyang Wang, Jin Cai, Yi Hao, Jia Yu, Yun Jiang, Xin Lü, Bianfang Liu
Veillonella and Lactobacillus species are key regulators of a healthy gut environment through metabolic cross-feeding, influencing lactic acid and short-chain fatty acid (SCFA) levels, which are crucial for gut health. This study aims to investigate how Veillonella ratti (V. ratti) and Lactobacillus acidophilus (LA) interact with each other and alleviate dextran sulfate sodium (DSS)-induced ulcerative colitis (UC) in a mouse model. We assess their metabolic interactions regarding carbon sources through co-culturing in a modified medium. In the in vitro experiments, V. ratti and LA were inoculated in mono-cultures and co-culture, and viable cell counts, OD600, pH, lactic acid, glucose and SCFAs were measured. For the in vivo experiment, 60 C57BL/6 mice were randomly divided into five groups and administered V. ratti and LA alone or in combination via oral gavage (1 × 109 CFU mL−1 per day per mouse) for 14 days. On the seventh day, 2.5% DSS was added to the drinking water to induce colitis. The effects of these probiotics on UC were evaluated by assessing intestinal barrier integrity and intestinal inflammation in the gut microenvironment. In vitro results demonstrated that co-culturing V. ratti with LA significantly increased viable cell numbers, lactic acid production, and SCFA production, while reducing pH and glucose levels in the medium. In vivo findings revealed that intervention with V. ratti, particularly in combination with LA, alleviated symptoms, including weight loss, colon shortening, and tissue damage. These probiotics mitigated intestinal inflammation by down-regulating pro-inflammatory molecules, such as IL-6, IL-1β, IL-γ, iNOS, and IFN-γ, as well as oxidative stress markers, including MDA and MPO. Concurrently, they upregulated the activity of anti-inflammatory enzymes, namely, SOD and GSH, and promoted the production of SCFAs. The combined intervention of V. ratti and LA significantly increased acetic acid, propionic acid, butyric acid, isobutyric acid, valeric acid, and total SCFAs in cecal contents. Furthermore, the intervention of V. ratti and LA increased the abundance of beneficial bacteria, such as Akkermansia, while reducing the abundance of harmful bacteria, such as Escherichia–Shigella and Desulfovibrio, thereby mitigating excessive inflammation. These findings highlight the enhanced therapeutic effects resulting from the interactions between V. ratti and LA, demonstrating the potential of this combined probiotic approach.
相关文献
IF 6.222
Contents listIF 6.222
Development of wound healing scaffolds with precisely-triggered sequential release of therapeutic nanoparticlesIF 6.843
A hollow neuronal carbon skeleton with ultrahigh pyridinic N content as a self-supporting potassium-ion battery anodeIF 6.367
Selective production of monocyclic aromatic hydrocarbons from ex situ catalytic fast pyrolysis of pine over the HZSM-5 catalyst with calcium formate as a hydrogen sourceIF 6.367
Coexisting order and disorder within a common 40-residue amyloid-β fibril structure in Alzheimer's disease brain tissueIF 6.222
Ether-functionalization of monoethanolamine (MEA) for reversible CO2 capture under solvent-free conditions with high-capacity and low-viscosityIF 6.367
Vapor-fed photoelectrolysis of water at 0.3 V using gas-diffusion photoanodes of SrTiO3 layersIF 6.367
Contents listIF 6.843
Microscopic insights into long-range 1D ordering in a dense semi-disordered molecular overlayerIF 6.222
来源期刊
Food & Function

Food & Function provides a unique venue for physicists, chemists, biochemists, nutritionists and other food scientists to publish novel, cutting-edge, original research focussing on food, its nutrients and their relation to human health and nutrition. We welcome research describing the: Physical properties and structure of food and how this relates to sensory perception and human health Biochemical and physiological actions of food components Interactions between foods, gut microbiota and human physiology Nutritional and biological evaluation of food Clinical and population studies using food or food components Development of biomarkers of food intake and effects on human health We also welcome systematic reviews and meta-analyses of existing studies in the literature, provided these are objective and scientifically valid Food in this context is defined as materials of plant, animal or mineral origin, which are consumed orally (by humans) for pleasure and to sustain growth and vital processes. Examples of research topics that are of interest to be published in Food & Function are: Chemistry and physics of food components and digestion processes Relationship between the physical properties/structure of food and nutrition and human health - for example, impact of food matrix or processing on nutrient release and uptake Molecular properties and physiological effects of food components (nutrients, fibres, essential micronutrients, phytochemicals, bioactives, food substitutes, novel ingredients, allergens, flavours and fragrances) Nutritional and health effects of food including bioavailability and metabolism assessment of food components (nutrients, micronutrients and other microconstituents) Efficacy and mechanisms of food constituents in the body - including biomarkers of intakes, exposure and effects Impacts of foods/food components on gut microorganisms and human physiology - For example impact of fermented foods Role of nutrition and diet in human disease prevention and development Cellular and molecular effects/mechanisms of food/food components image block The following types of research are not within the scope of Food & Function: Research relating to traditional herbal medicines, medicinal plants or active compounds extracted from such plants (materials that are primarily consumed as medicine, i.e. the intended purpose is primarily to treat, cure or prevent a non-deficiency disease) or relating to foods not recognised as human diet contributors Animal nutrition research that is not primarily designed as a model to benefit human nutrition (for example, studies of growth/accretion, heat stress, weaning, ruminant digestion, meat quality, etc.) Treatments administered by non-oral routes such as injection (subcutaneous, intramuscular, intraperitoneal, etc.), dermal/transdermal, rectal, inhalation, nasal, etc. Exceptions are when such routes of administration are used for mechanistic/control purposes in the experimental design Pharmacological/pharmaceutical approaches: Encapsulation, emulsification and/or pure controlled release of compounds or bioactives that do not come directly from edible foods, such as dietary supplements - these are better suited to a pharmaceutical journal In vitro or in vivo studies with poorly defined (insufficiently characterised) extracts and studies without appropriate controls will not be considered Cells studies not considering the metabolism of food components ingested – for example, irrelevant exposure of cells to compounds not present in the body after absorption Manuscripts with only a fully theoretical/bioinformatic approach and without appropriate support from analytical evidence will not be considered for publication Studies focussing solely on food engineering, preservation and sustainable technologies – these can be published in our companion journal Sustainable Food Technology Pure food analysis - these can be published in Analytical Methods