Catalytic activities modulated by flexible bimetallic metal–organic frameworks

文献信息

发布日期 2023-10-27
DOI 10.1039/D3CE01003A
影响因子 3.545
作者

Xiang He



摘要

Flexible metal–organic frameworks (MOFs) have been attracting increasing attention in stimuli-responsive applications. However, the effects of the MOF's structural transition on catalysis have been largely unexplored. Herein, the dynamic behaviors and catalytic ability of a flexible bimetallic MOF (i.e., MIL-88B(Fe/Co)) were systematically investigated through density functional theory calculations, which suggested rotary metal nodes and twisted ligands upon lattice contraction, subsequently leading to variable performances in the oxygen evolution reaction as confirmed by the differences in the free energy diagrams. To correlate the catalytic performance with the structural dynamics of the MOFs, partial pair distribution function analysis was carried out, which demonstrated that the short-range order of MIL-88B(Fe/Co) is unaffected by the lattice expansion/contraction, suggesting the intact bond connectivity during the structural transition. The bonding nature of the bimetallic MOF was further investigated through electron localization function analysis, which revealed that structural modulation poses negligible impacts on the bonding interactions in the metal nodes while the contracted structures can cause a closely packed framework. The dependence of the catalytic performance on the dynamic structures demonstrated in this work suggests that the structural transition of the flexible MOFs can be exploited to alter the energy barriers of the elementary steps during the catalysis processes, offering potential avenues to achieving better control over the catalytic pathways for enhanced efficiency.

来源期刊

CrystEngComm

CrystEngComm
CiteScore: 5.5
自引率: 7.7%
年发文量: 643

CrystEngComm is the forum for the design and understanding of crystalline materials. We welcome studies on the investigation of molecular behaviour within crystals, control of nucleation and crystal growth, engineering of crystal structures, and construction of crystalline materials with tuneable properties and functions. We publish hypothesis-driven research into… how crystal design affects thermodynamics, phase transitional behaviours, polymorphism, morphology control, solid state reactivity (crystal-crystal solution-crystal, and gas-crystal reactions), optoelectronics, ferroelectric materials, non-linear optics, molecular and bulk magnetism, conductivity and quantum computing, catalysis, absorption and desorption, and mechanical properties. Using Techniques and methods including… Single crystal and powder X-ray, electron, and neutron diffraction, solid-state spectroscopy, spectrometry, and microscopy, modelling and data mining, and empirical, semi-empirical and ab-initio theoretical evaluations. On crystalline and solid-state materials. We particularly welcome work on MOFs, coordination polymers, nanocrystals, host-guest and multi-component molecular materials. We also accept work on peptides and liquid crystals. All papers should involve the use or development of a design or optimisation strategy. Routine structural reports or crystal morphology descriptions, even when combined with an analysis of properties or potential applications, are generally considered to be outside the scope of the journal and are unlikely to be accepted.

推荐供应商

中国苏州市虎丘区星火精细化工厂
中国上海德祥医药技术有限公司
中国佛山市诺银贵金属材料有限公司
中国深圳德诺龙邦新材料有限公司
中国西安圣仕达清洁设备有限公司
中国广州市享美化工科技有限公司
德国阿尔伯特·汉特曼·埃尔泰卡有限公司
德国保羅萊賓格 GmbH & Co. KG
德国仪器系统有限公司
法国Teclis SAS
免责声明
本页面提供的学术期刊信息仅供参考和研究使用。我们与任何期刊出版商均无关联,也不处理投稿事宜。如有投稿相关咨询,请直接联系相关期刊出版商。
如发现页面信息有误,请发送邮件至 [email protected] 联系我们。我们将及时核实并处理您的问题。