Structural features that modulate the sharpness of the spin crossover transition in [FeIII(5-X-qsal)2]+ based salts

文献信息

发布日期 2023-11-13
DOI 10.1039/D3CE00954H
影响因子 3.545
作者

Bruno J. C. Vieira, Laura C. J. Pereira, Vasco da Gama, João C. Waerenborgh



摘要

This study aimed to unveil the structural modifications that can modulate the SCO transition sharpness, occurring up to room temperature, of FeIII compounds with general formula [Fe(5-X-qsal)2]+. These compounds are organized in layers of cationic chains. The structure of a series of compounds with different transition progressions were analyzed and compared to extract the structural differences responsible for the change in magnetic behavior. Two structural differences were found to be responsible for the modulation of the magnetic transition sharpness, in direct correspondence with the degree of interactions between the cations in each chain and between chains. The reinforcement of the interchain connectivity was found to contribute towards the sharpness of the transition. On the contrary, the reinforcement of the interlayer interactions resulted in the broadening of the transition. To achieve sharp transitions, it is necessary to obtain structures able to maximize interchain cation–cation interactions at the same time as they minimize the interlayer interactions.

来源期刊

CrystEngComm

CrystEngComm
CiteScore: 5.5
自引率: 7.7%
年发文量: 643

CrystEngComm is the forum for the design and understanding of crystalline materials. We welcome studies on the investigation of molecular behaviour within crystals, control of nucleation and crystal growth, engineering of crystal structures, and construction of crystalline materials with tuneable properties and functions. We publish hypothesis-driven research into… how crystal design affects thermodynamics, phase transitional behaviours, polymorphism, morphology control, solid state reactivity (crystal-crystal solution-crystal, and gas-crystal reactions), optoelectronics, ferroelectric materials, non-linear optics, molecular and bulk magnetism, conductivity and quantum computing, catalysis, absorption and desorption, and mechanical properties. Using Techniques and methods including… Single crystal and powder X-ray, electron, and neutron diffraction, solid-state spectroscopy, spectrometry, and microscopy, modelling and data mining, and empirical, semi-empirical and ab-initio theoretical evaluations. On crystalline and solid-state materials. We particularly welcome work on MOFs, coordination polymers, nanocrystals, host-guest and multi-component molecular materials. We also accept work on peptides and liquid crystals. All papers should involve the use or development of a design or optimisation strategy. Routine structural reports or crystal morphology descriptions, even when combined with an analysis of properties or potential applications, are generally considered to be outside the scope of the journal and are unlikely to be accepted.

推荐供应商

美国海洋工程
中国DYMATIC化学公司
德国劳西泽分析有限公司
中国重庆万好净化科技有限公司
中国南京延乔科技有限公司
中国江苏瑞佳机电设备制有限公司
德国Gebrüder Schmitt GmbH
中国上海阿瑞阀门成套设备厂
中国浙江省长兴创新超细粉有限公司
德国PMR TechUG(轴承式机械设备)
免责声明
本页面提供的学术期刊信息仅供参考和研究使用。我们与任何期刊出版商均无关联,也不处理投稿事宜。如有投稿相关咨询,请直接联系相关期刊出版商。
如发现页面信息有误,请发送邮件至 [email protected] 联系我们。我们将及时核实并处理您的问题。