Alternating [ML2(MeOH)2] and [ML2(EtOH)2] layers in low-temperature ferromagnets [ML2(MeOH)2][ML2(EtOH)2] (M = CoII, NiII or Co II0.5Ni II0.5)
文献信息
Victor Ovcharenko, Elena Fursova, Vitaly Morozov, Galina Romanenko
Bimolecular complexes [ML2(MeOH)2][ML2(EtOH)2], where M is CoII, NiII or CoII0.5NiII0.5 and L is a deprotonated enaminoketone 4-(3′,3,3′-trifluoro-2′-oxopropylidene)-2,2,5,5-tetramethyl-3-imidazolidin-1-oxyl, were found to be isolated in the solid phase from a solution containing MeOH and EtOH in the ratio 1 : 10. Their solids have a layered-polymer structure due to hydrogen bonds between the OH-groups of the coordinated ROH molecules and nitroxide groups of the neighboring [ML2(ROH)2] molecules. The peculiar crystal structures of [ML2(MeOH)2][ML2(EtOH)2] have ordered alternation of methanol- and ethanol-containing supramolecular layers. Detailed crystallochemical analysis showed that during the formation of [ML2(MeOH)2][ML2(EtOH)2] crystals, the MeOH containing layer is significantly deformed in comparison with the [ML2(MeOH)2] structure. This indicates that the ethanol-containing layer determines the crystal formation, while the {ML2(MeOH)2} layer “adjusts” to it. Magnetochemical study of the bimolecular complexes [ML2(MeOH)2][ML2(EtOH)2] revealed magnetic ordering at low temperatures.
相关文献
IF 6.367
MnO/C cubo-polyhedrons derived from α-MnO2@ZIF-8 as anode materials for high-performance lithium-ion batteriesIF 6.367
Non-aqueous neptunium and plutonium redox behaviour in THF – access to a rare Np(iii) synthetic precursorIF 6.222
Engineering nanoporous organic frameworks to stabilize naked Au clusters: a charge modulation approachIF 6.222
Facile room-temperature growth of nanostructured CuBi2O4 for selective electrochemical reforming and photoelectrochemical hydrogen evolution reactionsIF 6.367
Catalogue of self-targeting nano-medical inventions to accelerate clinical trialsIF 6.843
Selective light driven reduction of CO2 to HCOOH in water using a {MoV9}n (n = 1332–3600) based soft-oxometalate (SOM)IF 6.222
Catalytic depolymerization of Kraft lignin to produce liquid fuels via Ni–Sn metal oxide catalystsIF 6.367
Catalytic depolymerization of alkali lignin in ionic liquids on Pt-supported La2O3–SO42−/ZrO2 catalystsIF 6.367
Cu2ZnSnS4 nanocrystals for microwave thermal and microwave dynamic combination tumor therapyIF 6.222
来源期刊
CrystEngComm

CrystEngComm is the forum for the design and understanding of crystalline materials. We welcome studies on the investigation of molecular behaviour within crystals, control of nucleation and crystal growth, engineering of crystal structures, and construction of crystalline materials with tuneable properties and functions. We publish hypothesis-driven research into… how crystal design affects thermodynamics, phase transitional behaviours, polymorphism, morphology control, solid state reactivity (crystal-crystal solution-crystal, and gas-crystal reactions), optoelectronics, ferroelectric materials, non-linear optics, molecular and bulk magnetism, conductivity and quantum computing, catalysis, absorption and desorption, and mechanical properties. Using Techniques and methods including… Single crystal and powder X-ray, electron, and neutron diffraction, solid-state spectroscopy, spectrometry, and microscopy, modelling and data mining, and empirical, semi-empirical and ab-initio theoretical evaluations. On crystalline and solid-state materials. We particularly welcome work on MOFs, coordination polymers, nanocrystals, host-guest and multi-component molecular materials. We also accept work on peptides and liquid crystals. All papers should involve the use or development of a design or optimisation strategy. Routine structural reports or crystal morphology descriptions, even when combined with an analysis of properties or potential applications, are generally considered to be outside the scope of the journal and are unlikely to be accepted.