Construction of 2D heterostructure Fe2P–CoP2/MoOx nanosheets for efficient oxygen evolution reaction
文献信息
Guan Sheng, Yanghang Fang, Shuangyang Zhao, Ruilin Lyu, Huijun Song, Hui Jin, Hasmaliza Mohamad, Che Azurahanim Che Abudullah, Soorathep Kheawhom, Wei Shao, Ruilian Yin, Ahmad Azmin Mohamad
The oxygen evolution reaction (OER) plays a pivotal role in diverse electrochemical conversion applications, such as water splitting and metal–air batteries. Nevertheless, the formation of several active sites in catalysts made of non-noble metals continues to encounter notable obstacles. To tackle this challenge, a 2D heterostructure catalyst composed of Fe2P–CoP2/MoOx nanosheets was designed. The cobalt molybdate (CoMoO4) nanosheets and their supported FeOOH nanoflakes were in situ transformed into 2D heterostructure Fe2P–CoP2/MoOx nanosheets via a simple hydrothermal and phosphorization process. Note that the 2D MoOx nanosheets significantly enhance the electrochemically active surface area (ECSA), and there is a synergistic effect between cobalt phosphide (CoP2) and iron phosphide (Fe2P) nanoparticles, improving the OER reaction activity. When the electrocatalyst was employed for the OER, the Fe2P–CoP2/MoOx nanosheets exhibit remarkable OER efficiency, reducing overpotentials to as low as 235 mV at a current density of 50 mA cm−2, accompanied by a Tafel slope of 33.32 mV dec−1, along with exceptional enduring stability. The synthesis of the 2D heterostructure Fe2P–CoP2–MoOx nanosheets and their remarkable OER performance represent substantial advancements in developing electrocatalysts that are productive and stable in sustainable energy conversion and storage applications.
相关文献
IF 6.367
Engineering nanoporous organic frameworks to stabilize naked Au clusters: a charge modulation approachIF 6.222
Carbon-based photocatalysts for enhanced photocatalytic reduction of CO2 to solar fuelsIF 6.367
Palladium-catalyzed silaborative carbocyclizations of 1,6-diynesIF 6.222
Vapor-fed photoelectrolysis of water at 0.3 V using gas-diffusion photoanodes of SrTiO3 layersIF 6.367
MnO/C cubo-polyhedrons derived from α-MnO2@ZIF-8 as anode materials for high-performance lithium-ion batteriesIF 6.367
Electrocatalytic cleavage of lignin model dimers using ruthenium supported on activated carbon clothIF 6.367
Stabilizing synthetic DNA for long-term data storage with earth alkaline saltsIF 6.222
Small size yet big action: a simple sulfate anion templated a discrete 78-nuclearity silver sulfur nanocluster with a multishell structureIF 6.222
Metal–organic frameworks: preparation and applications in highly efficient heterogeneous photocatalysisIF 6.367
来源期刊
CrystEngComm

CrystEngComm is the forum for the design and understanding of crystalline materials. We welcome studies on the investigation of molecular behaviour within crystals, control of nucleation and crystal growth, engineering of crystal structures, and construction of crystalline materials with tuneable properties and functions. We publish hypothesis-driven research into… how crystal design affects thermodynamics, phase transitional behaviours, polymorphism, morphology control, solid state reactivity (crystal-crystal solution-crystal, and gas-crystal reactions), optoelectronics, ferroelectric materials, non-linear optics, molecular and bulk magnetism, conductivity and quantum computing, catalysis, absorption and desorption, and mechanical properties. Using Techniques and methods including… Single crystal and powder X-ray, electron, and neutron diffraction, solid-state spectroscopy, spectrometry, and microscopy, modelling and data mining, and empirical, semi-empirical and ab-initio theoretical evaluations. On crystalline and solid-state materials. We particularly welcome work on MOFs, coordination polymers, nanocrystals, host-guest and multi-component molecular materials. We also accept work on peptides and liquid crystals. All papers should involve the use or development of a design or optimisation strategy. Routine structural reports or crystal morphology descriptions, even when combined with an analysis of properties or potential applications, are generally considered to be outside the scope of the journal and are unlikely to be accepted.