Directed synthesis of aragonite through semi-continuous seeded crystallization methods for CO2 utilization

文献信息

发布日期 2023-10-19
DOI 10.1039/D3CE00809F
影响因子 3.545
作者

Aysha Chin



摘要

The synthesis of high-purity precipitated calcium carbonate (PCC) is responsible for approximately 30% of the global annual production of calcium carbonates. As increasing carbon capture utilization and storage (CCUS) facilities come online to mitigate anthropogenic emissions, PCC production is expected to grow through carbon mineralization production pathways. Tuning the PCC morphological and crystal structure properties will largely dictate the potential downstream uses of the carbonate products; thus, increased research is needed into process design considerations for crystal habit modification of PCC. Of the three anhydrous polymorphic forms of PCC, aragonite shows great promise in applications as a filler material or flow-modifier due to its unique needle-like structure. Synthetic aragonite is generally produced at elevated reaction temperatures (60–80 °C), however alternative crystallization methods can be applied to reduce this energy barrier and better control crystal production. Herein, we compare the crystallization of aragonite in both a batch and semi-continuous crystallizers using a model system (e.g., CaCl2 and K2CO3) to elucidate the effect of mixing and saturation in relation to PCC crystal morphology. Seeding of aragonite is also utilized as a method to better control the PCC production process and lower the required synthesis temperature to 25–40 °C. Finally, these methods are extended to a Ca-rich leachate from waste hydrated cement paste (HCP) for comparison with the model system. The produced aragonite is reincorporated into new cement and tested for its potential hydration and rheological advantages. Overall, this work motivates the use of alternative crystallization methods to promote polymorph control for niche CCUS applications, especially cement decarbonization.

来源期刊

CrystEngComm

CrystEngComm
CiteScore: 5.5
自引率: 7.7%
年发文量: 643

CrystEngComm is the forum for the design and understanding of crystalline materials. We welcome studies on the investigation of molecular behaviour within crystals, control of nucleation and crystal growth, engineering of crystal structures, and construction of crystalline materials with tuneable properties and functions. We publish hypothesis-driven research into… how crystal design affects thermodynamics, phase transitional behaviours, polymorphism, morphology control, solid state reactivity (crystal-crystal solution-crystal, and gas-crystal reactions), optoelectronics, ferroelectric materials, non-linear optics, molecular and bulk magnetism, conductivity and quantum computing, catalysis, absorption and desorption, and mechanical properties. Using Techniques and methods including… Single crystal and powder X-ray, electron, and neutron diffraction, solid-state spectroscopy, spectrometry, and microscopy, modelling and data mining, and empirical, semi-empirical and ab-initio theoretical evaluations. On crystalline and solid-state materials. We particularly welcome work on MOFs, coordination polymers, nanocrystals, host-guest and multi-component molecular materials. We also accept work on peptides and liquid crystals. All papers should involve the use or development of a design or optimisation strategy. Routine structural reports or crystal morphology descriptions, even when combined with an analysis of properties or potential applications, are generally considered to be outside the scope of the journal and are unlikely to be accepted.

推荐供应商

中国赤峰瑞阳化工有限公司
中国宜昌华能环保科技有限公司
德国阿尔伯特·汉特曼·埃尔泰卡有限公司
中国北京朗润时代环保科技有限公司
美国股份有限公司梅佐
中国江西万香萃生物科技有限公司
瑞士吕格F.
中国芜湖市汤普森生物科技有限公司
中国天津市卓龙进出口贸易有限公司
中国海南普利制药有限公司
免责声明
本页面提供的学术期刊信息仅供参考和研究使用。我们与任何期刊出版商均无关联,也不处理投稿事宜。如有投稿相关咨询,请直接联系相关期刊出版商。
如发现页面信息有误,请发送邮件至 [email protected] 联系我们。我们将及时核实并处理您的问题。