Self-engineered binary nanoassembly enabling closed-loop glutathione depletion-amplified tumor ferroptosis

文献信息

发布日期 2023-09-21
DOI 10.1039/D3BM01153D
影响因子 6.843
作者

Jin Lei, Shenwu Zhang, Zehua Wu, Xinxin Sun, Binghong Zhou, Peiqi Huang, Mingzhu Fang, Lin Li, Cong Luo, Zhonggui He



摘要

Ferroptosis has emerged as a promising target for anticancer treatment, comprising iron-dependent lipid peroxidation and excessive accumulation of reactive oxygen species. Given that glutathione (GSH) overproduced in tumor cells antagonizes the cellular oxidation system, the reduction of GSH production has been extensively explored to induce ferroptosis. However, reducing GSH production alone is insufficient to trigger an intense lipid peroxidation storm. It is highly desirable to achieve systemic GSH depletion through simultaneous production and consumption intervention. Herein, we propose a bidirectional blockage strategy for closed-loop GSH depletion-amplified tumor ferroptosis. Sorafenib (Sor) and gambogic acid (GA) were elaborately fabricated as a self-engineered carrier-free nanoassembly without any nanocarrier materials. The PEGylated dual-drug nanoassembly enables favorable co-delivery and tumor-specific release of Sor and GA. Notably, a closed-loop GSH depletion is observed as a result of a Sor-induced decrease in GSH production and GA-accelerated GSH consumption in vitro and in vivo. As expected, this uniquely engineered dual-drug nanoassembly demonstrates vigorous antitumor activity in 4T1 breast tumor-bearing mice. This study presents a novel nanotherapeutic modality for ferroptosis-driven cancer treatment.

来源期刊

Biomaterials Science

Biomaterials Science
CiteScore: 11.5
自引率: 3.4%
年发文量: 492

Biomaterials Science is an international high impact journal exploring the science of biomaterials and their translation towards clinical use. Its scope encompasses new concepts in biomaterials design, studies into the interaction of biomaterials with the body, and the use of materials to answer fundamental biological questions. Papers do not necessarily need to report a new biomaterial but should provide novel insight into the biological applications of the biomaterial. Articles that primarily focus on demonstrating novel materials chemistry and bring a molecular picture to bear on a given material’s suitability as a biomaterial are more suited to our companion journal, Journal of Materials Chemistry B. Biomaterials Science publishes primary research and review-type articles in the following areas: molecular design of biomaterials, including translation of emerging chemistries to biomaterials science of cells and materials at the nanoscale and microscale materials as model systems for stem cell and human biology materials for tissue engineering and regenerative medicine (Nano)materials and (nano)systems for therapeutic delivery interactions at the biointerface biologically inspired and biomimetic materials, including bio-inspired self-assembly systems and cell-inspired synthetic tools next-generation biomaterials tools and methods

推荐供应商

中国广东汇联达化工有限公司
中国浙江金砖铜技术有限公司。
中国浙江华晟化学制品有限公司
中国耒阳兴发锰业有限公司
中国江苏金沃新材料有限公司
中国青岛博丰科医药科技有限公司
德国PMA Prozess- und Maschinen-Automation GmbH
德国电池球 GmbH
中国无锡开立达实业有限公司
中国武汉博欧特生物科技有限公司
免责声明
本页面提供的学术期刊信息仅供参考和研究使用。我们与任何期刊出版商均无关联,也不处理投稿事宜。如有投稿相关咨询,请直接联系相关期刊出版商。
如发现页面信息有误,请发送邮件至 [email protected] 联系我们。我们将及时核实并处理您的问题。