Autonomous polymer synthesis delivered by multi-objective closed-loop optimisation

文献信息

发布日期 2022-02-18
DOI 10.1039/D2PY00040G
影响因子 5.582
作者

Stephen T. Knox, Sam J. Parkinson, Clarissa Y. P. Wilding, Richard A. Bourne, Nicholas J. Warren



摘要

Application of artificial intelligence and machine learning for polymer discovery offers an opportunity to meet the drastic need for the next generation high performing and sustainable polymer materials. Here, these technologies were employed within a computationally controlled flow reactor which enabled self-optimisation of a range of RAFT polymerisation formulations. This allowed for autonomous identification of optimum reaction conditions to afford targeted polymer properties – the first demonstration of closed loop (i.e. user-free) optimisation for multiple objectives in polymer synthesis. The synthesis platform comprised a computer-controlled flow reactor, online benchtop NMR and inline gel permeation chromatography (GPC). The RAFT polymerisation of tert-butyl acrylamide (tBuAm), n-butyl acrylate (BuA) and methyl methacrylate (MMA) were optimised using the Thompson sampling efficient multi-objective optimisation (TSEMO) algorithm which explored the trade-off between molar mass dispersity (Đ) and monomer conversion without user interaction. The pressurised computer-controlled flow reactor allowed for polymerisation in normally “forbidden” conditions – without degassing and at temperatures higher than the normal boiling point of the solvent. Autonomous experimentation included comparison of five different RAFT agents for the polymerisation of tBuAm, an investigation into the effects of polymerisation inhibition using BuA and intensification of the otherwise slow MMA polymerisation.

来源期刊

Polymer Chemistry

Polymer Chemistry
CiteScore: 8.6
自引率: 7.3%
年发文量: 457

Polymer Chemistry welcomes submissions in all areas of polymer science that have a strong focus on macromolecular chemistry. Manuscripts may cover a broad range of fields, yet no direct application focus is required.

推荐供应商

中国青岛新永安化学品有限公司
中国Macylab仪器公司
德国马希宁·梅切尔
中国石家庄超微新材料科技有限公司
中国金恩(广州)新材料有限公司
中国威海智德真空科技有限公司
荷兰Geveke Klimaattechniek bv
瑞士CARBOGEN AMCIS AG
中国霸州路德精细化工有限公司
中国天津市卓龙进出口贸易有限公司
免责声明
本页面提供的学术期刊信息仅供参考和研究使用。我们与任何期刊出版商均无关联,也不处理投稿事宜。如有投稿相关咨询,请直接联系相关期刊出版商。
如发现页面信息有误,请发送邮件至 [email protected] 联系我们。我们将及时核实并处理您的问题。