Homotypic and heterotypic adhesion of cancer cells revealed by force-induced remnant magnetization spectroscopy
文献信息
Intercellular interaction has tremendous impacts on physiological processes, while unsuccessful cell–cell interaction causes diseases, such as tumorigenesis and metastasis. In-depth investigation of cell–cell adhesions is of great significance to understand the pathological state of cells, and for the rational design of drugs and therapies. Herein, we developed a force-induced remnant magnetization spectroscopy (FIRMS) method to measure cell–cell adhesion in a high throughput way. Our results showed that FIRMS is capable of quantifying and identifying cell–cell adhesion with high detection efficiency. Specifically, we quantified homotypic and heterotypic adhesion forces during tumor metastasis using breast cancer cell lines. We observed that homotypic and heterotypic adhesion forces of cancer cells were associated with degrees of malignancy. In addition, we revealed that CD43-ICAM-1 was a ligand–receptor pair mediating heterotypic adhesion of breast cancer cells to endothelial cells. These findings contribute to advance in-depth understanding of the process of cancer metastasis and provide insight into targeting intercellular adhesion molecules as a potential strategy to inhibit cancer metastasis.
相关文献
IF 6.367
Synthesis of aviation fuel from bio-derived isophoroneIF 6.367
Front coverIF 6.843
Photoactivatable fluorophores for durable labelling of individual cellsIF 6.222
An environmentally friendly natural polymer as a universal interfacial modifier for fullerene and non-fullerene polymer solar cellsIF 6.367
Catalogue of self-targeting nano-medical inventions to accelerate clinical trialsIF 6.843
Three-terminal III–V/Si tandem solar cells enabled by a transparent conductive adhesiveIF 6.367
Selective light driven reduction of CO2 to HCOOH in water using a {MoV9}n (n = 1332–3600) based soft-oxometalate (SOM)IF 6.222
In situ growth of all-inorganic perovskite nanocrystals on black phosphorus nanosheetsIF 6.222
Microscopic insights into long-range 1D ordering in a dense semi-disordered molecular overlayerIF 6.222
来源期刊
Nanoscale Horizons

Nanoscale Horizons is a leading journal for the publication of exceptionally high-quality, innovative nanoscience and nanotechnology. The journal places an emphasis on original research that demonstrates a new concept or a new way of thinking (a conceptual advance), rather than primarily reporting technological improvements. However, outstanding articles featuring truly breakthrough developments such as record performance alone may also be published in the journal. For work to be published it must be of significant general interest to our community-spanning readership. Topics covered in the journal include, but are not limited to: Synthesis of nanostructured and nanoscale materials Quantum materials 2D materials Layered materials Layered quantum materials Characterisation of functional nanoscale materials and bio-assemblies Properties of nanoscale materials Self-assembly and molecular organisation Complex hybrid nanostructures Nanocomposites, nanoparticles, nanocrystalline materials, and nanoclusters Nanotubes, molecular nanowires and nanocrystals Molecular nanoscience Nanocatalysis Theoretical modelling Single-molecules Plasmonics Nanoelectronics and molecular electronics Nanophotonics Nanochips, nanosensors, nanofluidics and nanofabrication Carbon-based nanoscale materials and devices Biomimetic materials Nanobiotechnology/bionanomaterials Nanomedicine Regulatory approaches and risk assessment