Reduction of N2 to NH3 by TiO2-supported Ni cluster catalysts: a DFT study

文献信息

发布日期 2021-05-25
DOI 10.1039/D1CP00859E
影响因子 3.676
作者

Huiru Yang, Rui Gao, Dandan Wang, Haibo Li, Zhao Zhao, Ming Feng, Zhongwei Chen



摘要

Electrochemical techniques for ammonia synthesis are considered as an encouraging energy conversion technology to efficiently meet the challenge of nitrogen cycle balance. Herein, we find that TiO2(101)-supported Ni4 and Ni13 clusters can serve as efficient catalysts for electrocatalytic N2 reduction based on theoretical calculations. Electronic property calculations reveal the formation of electron-deficient Ni clusters on the TiO2 surface, which provides multiple active sites for N2 adsorption and activation. Theoretical calculation identifies the strongest activated configuration of N2* on the catalysts and confirms the potential-limiting step in the nitrogen reduction reaction (NRR). On Ni4–TiO2(101), N2* → NNH* is the potential-limiting step with a very small free energy increase (ΔG) of 0.24 eV (the corresponding overpotential is 0.33 V), while on Ni13–TiO2(101) the potential-limiting step occurs at NH* → NH2* with ΔG of 0.49 eV (the corresponding overpotential is 0.58 V). Moreover, the Nin–TiO2(101) catalyst, especially Ni13–TiO2(101), involves in a highly selective NRR even at the corresponding NRR overpotential. This work will enlighten material design to construct metal oxide supported transition metal clusters for the highly efficient NRR and NH3 synthesis.

来源期刊

Physical Chemistry Chemical Physics

Physical Chemistry Chemical Physics
CiteScore: 5.5
自引率: 10.3%
年发文量: 3036

Physical Chemistry Chemical Physics (PCCP) is an international journal co-owned by 19 physical chemistry and physics societies from around the world. This journal publishes original, cutting-edge research in physical chemistry, chemical physics and biophysical chemistry. To be suitable for publication in PCCP, articles must include significant innovation and/or insight into physical chemistry; this is the most important criterion that reviewers and Editors will judge against when evaluating submissions. The journal has a broad scope and welcomes contributions spanning experiment, theory, computation and data science. Topical coverage includes spectroscopy, dynamics, kinetics, statistical mechanics, thermodynamics, electrochemistry, catalysis, surface science, quantum mechanics, quantum computing and machine learning. Interdisciplinary research areas such as polymers and soft matter, materials, nanoscience, energy, surfaces/interfaces, and biophysical chemistry are welcomed if they demonstrate significant innovation and/or insight into physical chemistry. Joined experimental/theoretical studies are particularly appreciated when complementary and based on up-to-date approaches.

推荐供应商

墨西哥Alkem de México,SA de C.V.
德国ZIAG工厂工程有限公司
德国Elektrowärme Gabbey
德国LECO仪器有限公司
法国米歇尔·鲍莱
中国成都遨帆医药科技有限公司
中国长沙建运有色金属有限公司
德国FWA Friedrich Werntges Apparatebau GmbH
奥地利usePAT GmbH
德国热系统有限公司KG
免责声明
本页面提供的学术期刊信息仅供参考和研究使用。我们与任何期刊出版商均无关联,也不处理投稿事宜。如有投稿相关咨询,请直接联系相关期刊出版商。
如发现页面信息有误,请发送邮件至 [email protected] 联系我们。我们将及时核实并处理您的问题。