A reaction density functional theory study of the solvent effect in prototype SN2 reactions in aqueous solution

文献信息

发布日期 2019-09-18
DOI 10.1039/C9CP03888D
影响因子 3.676
作者

Weiqiang Tang, Chongzhi Qiao, Peng Jiang, Changjie Lu, Shuangliang Zhao, Honglai Liu



摘要

The bimolecular nucleophilic substitution (SN2) reaction is a fundamental and representative reaction in organic chemistry, and the reaction rate is sensitive to the choice of underlying solvents. Herein, we investigate the solvent effect on the free energy profiles of two paradigm reactions in aqueous solution, i.e., symmetric and asymmetric SN2 reactions, by using the proposed multiscale reaction density functional theory (RxDFT) method, which employs quantum density functional theory for calculating the intrinsic reaction free energy coupled with classical density functional theory for addressing solvation contribution. The solvent effect is quantitatively addressed with RxDFT by examining the changes in the free energy profile of the chemical reaction from the gas phase to the aqueous solution. The complete descriptions of the free energy profiles in aqueous solution for the SN2 reactions based on RxDFT agree well with the results from the Specific Reaction Parameterization (SRP) quantum model, QM/MM and the RISM/SCF method. Overall, the RxDFT method is an efficient tool to predict the free energy profile and address the solvent effect of chemical reactions with satisfactory accuracy and low computational cost.

来源期刊

Physical Chemistry Chemical Physics

Physical Chemistry Chemical Physics
CiteScore: 5.5
自引率: 10.3%
年发文量: 3036

Physical Chemistry Chemical Physics (PCCP) is an international journal co-owned by 19 physical chemistry and physics societies from around the world. This journal publishes original, cutting-edge research in physical chemistry, chemical physics and biophysical chemistry. To be suitable for publication in PCCP, articles must include significant innovation and/or insight into physical chemistry; this is the most important criterion that reviewers and Editors will judge against when evaluating submissions. The journal has a broad scope and welcomes contributions spanning experiment, theory, computation and data science. Topical coverage includes spectroscopy, dynamics, kinetics, statistical mechanics, thermodynamics, electrochemistry, catalysis, surface science, quantum mechanics, quantum computing and machine learning. Interdisciplinary research areas such as polymers and soft matter, materials, nanoscience, energy, surfaces/interfaces, and biophysical chemistry are welcomed if they demonstrate significant innovation and/or insight into physical chemistry. Joined experimental/theoretical studies are particularly appreciated when complementary and based on up-to-date approaches.

推荐供应商

中国乔克电子排水阀上海销售公司
中国温州华敏不锈钢有限公司
中国镇江市海通化工有限公司
中国石家庄超微新材料科技有限公司
英国精英热系统有限公司
中国陕西智淇生物科技有限公司
德国雷特克电子规范技术有限公司
中国山东省博兴县鑫旺食品机械工贸有
德国BÜsch Technology GmbH & Co. KG
德国Wellomer GmbH
免责声明
本页面提供的学术期刊信息仅供参考和研究使用。我们与任何期刊出版商均无关联,也不处理投稿事宜。如有投稿相关咨询,请直接联系相关期刊出版商。
如发现页面信息有误,请发送邮件至 [email protected] 联系我们。我们将及时核实并处理您的问题。