A practical and highly sensitive C3N4-TYR fluorescent probe for convenient detection of dopamine

文献信息

发布日期 2015-06-15
DOI 10.1039/C5NR03316K
影响因子 7.79
作者

Hao Li, Manman Yang, Juan Liu, Yalin Zhang, Yanmei Yang, Hui Huang, Yang Liu, Zhenhui Kang



摘要

The C3N4-tyrosinase (TYR) hybrid is a highly accurate, sensitive and simple fluorescent probe for the detection of dopamine (DOPA). Under optimized conditions, the relative fluorescence intensity of C3N4-TYR is proportional to the DOPA concentration in the range from 1 × 10−3 to 3 × 10−8 mol L−1 with a correlation coefficient of 0.995. In the present system, the detection limit achieved is as low as 3 × 10−8 mol L−1. Notably, these quantitative detection results for clinical samples are comparable to those of high performance liquid chromatography. Moreover, the enzyme-encapsulated C3N4 sensing arrays on both glass slide and test paper were evaluated, which revealed sensitive detection and excellent stability. The results reported here provide a new approach for the design of a multifunctional nanosensor for the detection of bio-molecules.

来源期刊

Nanoscale

Nanoscale
CiteScore: 12.1
自引率: 5.2%
年发文量: 1681

Nanoscale is a high-impact international journal, publishing high-quality research across nanoscience and nanotechnology. Nanoscale publishes a full mix of research articles on experimental and theoretical work, including reviews, communications, and full papers. Highly interdisciplinary, Nanoscale appeals to scientists, researchers and professionals interested in nanoscience and nanotechnology, quantum materials and quantum technology, including the areas of physics, chemistry, biology, medicine, materials, energy/environment, information technology, detection science, healthcare and drug discovery, and electronics. For publication in Nanoscale, papers must report high-quality reproducible new work that will be of significant general interest to the journal's wide international readership. Nanoscale is a collaborative venture between the Royal Society of Chemistry Publishing and a leading nanoscience research centre, the National Center for Nanoscience and Technology (NCNST) in Beijing, China. image block The journal publishes weekly issues, complementing and building on the nano content already published across the Royal Society of Chemistry Publishing journal portfolio. Since its launch in late 2009, Nanoscale has established itself as a platform for high-quality, cross-community research that bridges the various disciplines involved with nanoscience and nanotechnology, publishing important research from leading international research groups.

推荐供应商

德国Eurofins GfA Gesellschaft für Arbeitsplatz und UmweltAnalytik mbH
德国库卡系统有限公司
中国泰州佳音化工有限公司
德国博世力士乐股份公司
德国雷特克电子规范技术有限公司
中国淮北新兴实业有限责任公司
中国襄樊诺尔化工有限公司
中国江西拓昊福生物科技有限公司
德国Berghof有限公司
中国山西德之北金属材料有限公司
免责声明
本页面提供的学术期刊信息仅供参考和研究使用。我们与任何期刊出版商均无关联,也不处理投稿事宜。如有投稿相关咨询,请直接联系相关期刊出版商。
如发现页面信息有误,请发送邮件至 [email protected] 联系我们。我们将及时核实并处理您的问题。