Guided formation of sub-5 nm interstitial gaps between plasmonic nanodisks

文献信息

发布日期 2015-04-13
DOI 10.1039/C5NR01317H
影响因子 7.79
作者

Jung-Sub Wi, Tae Geol Lee



摘要

To achieve a reliable formation of a surface-enhanced Raman scattering (SERS) sensor with evenly distributed hot spots on a wafer scale substrate, we propose a hybrid approach combining physical nanolithography for preparing Au nanodisks and chemical Au reduction for growing them. During the chemical growth, the interstitial distance between the nanodisks decreased from 60 nm to sub-5 nm. The resulting patterns of the nanogap-rich Au nanodisks successfully enhance the SERS signal, and its intensity map shows only a 5% or less signal variation on the entire sample.

来源期刊

Nanoscale

Nanoscale
CiteScore: 12.1
自引率: 5.2%
年发文量: 1681

Nanoscale is a high-impact international journal, publishing high-quality research across nanoscience and nanotechnology. Nanoscale publishes a full mix of research articles on experimental and theoretical work, including reviews, communications, and full papers. Highly interdisciplinary, Nanoscale appeals to scientists, researchers and professionals interested in nanoscience and nanotechnology, quantum materials and quantum technology, including the areas of physics, chemistry, biology, medicine, materials, energy/environment, information technology, detection science, healthcare and drug discovery, and electronics. For publication in Nanoscale, papers must report high-quality reproducible new work that will be of significant general interest to the journal's wide international readership. Nanoscale is a collaborative venture between the Royal Society of Chemistry Publishing and a leading nanoscience research centre, the National Center for Nanoscience and Technology (NCNST) in Beijing, China. image block The journal publishes weekly issues, complementing and building on the nano content already published across the Royal Society of Chemistry Publishing journal portfolio. Since its launch in late 2009, Nanoscale has established itself as a platform for high-quality, cross-community research that bridges the various disciplines involved with nanoscience and nanotechnology, publishing important research from leading international research groups.

推荐供应商

德国TKT-Kunstststoff-Technik GmbH
中国常州市科威精细化工有限公司
中国潍坊昌盛硝盐有限公司
中国温州华敏不锈钢有限公司
中国建德市永固塑料设备厂
德国埃德尔斯塔尔服务公司
德国MOLLOX CHEMIE GmbH
中国广州市耿达贸易有限公司
中国武汉顺源昇生物医药科技有限公司
中国悠牛网
免责声明
本页面提供的学术期刊信息仅供参考和研究使用。我们与任何期刊出版商均无关联,也不处理投稿事宜。如有投稿相关咨询,请直接联系相关期刊出版商。
如发现页面信息有误,请发送邮件至 [email protected] 联系我们。我们将及时核实并处理您的问题。