Role of hydrogen in the chemical vapor deposition growth of MoS2 atomic layers

文献信息

发布日期 2015-04-01
DOI 10.1039/C5NR00904A
影响因子 7.79
作者

Xinming Li, Xiaobei Zang, Kunlin Wang, Dan Xie



摘要

Hydrogen plays a crucial role in the chemical vapor deposition (CVD) growth of graphene. Here, we have revealed the roles of hydrogen in the two-step CVD growth of MoS2. Our study demonstrates that hydrogen acts as the following: (i) an inhibitor of the thermal-induced etching effect in the continuous film growth process; and (ii) a promoter of the desulfurization reaction by decreasing the S/Mo atomic ratio and the oxidation reaction of the obtained MoSx (0 < x < 2) films. A high hydrogen content of more than 100% in argon forms nano-sized circle-like defects and damages the continuity and uniformity of the film. Continuous MoS2 films with a high crystallinity and a nearly perfect S/Mo atomic ratio were finally obtained after sulfurization annealing with a hydrogen content in the range of 20%–80%. This insightful understanding reveals the crucial roles of hydrogen in the CVD growth of MoS2 and paves the way for the controllable synthesis of two-dimensional materials.

来源期刊

Nanoscale

Nanoscale
CiteScore: 12.1
自引率: 5.2%
年发文量: 1681

Nanoscale is a high-impact international journal, publishing high-quality research across nanoscience and nanotechnology. Nanoscale publishes a full mix of research articles on experimental and theoretical work, including reviews, communications, and full papers. Highly interdisciplinary, Nanoscale appeals to scientists, researchers and professionals interested in nanoscience and nanotechnology, quantum materials and quantum technology, including the areas of physics, chemistry, biology, medicine, materials, energy/environment, information technology, detection science, healthcare and drug discovery, and electronics. For publication in Nanoscale, papers must report high-quality reproducible new work that will be of significant general interest to the journal's wide international readership. Nanoscale is a collaborative venture between the Royal Society of Chemistry Publishing and a leading nanoscience research centre, the National Center for Nanoscience and Technology (NCNST) in Beijing, China. image block The journal publishes weekly issues, complementing and building on the nano content already published across the Royal Society of Chemistry Publishing journal portfolio. Since its launch in late 2009, Nanoscale has established itself as a platform for high-quality, cross-community research that bridges the various disciplines involved with nanoscience and nanotechnology, publishing important research from leading international research groups.

推荐供应商

中国杭州杭氧小型空气压缩机有限公司
德国-。 威廉·施密特公司
德国马钦鲍公司
英国阿尔法水分系统有限公司
德国Interstuhl Büromöbel GmbH & Co. KG
德国Mci-miritz柑橘配料有限公司
中国南京三面体化工科技有限公司
德国Verfaðstechnik Schweitzer GmbH
瑞士马里诺·穆勒博士AG
印度印度海湾公司
免责声明
本页面提供的学术期刊信息仅供参考和研究使用。我们与任何期刊出版商均无关联,也不处理投稿事宜。如有投稿相关咨询,请直接联系相关期刊出版商。
如发现页面信息有误,请发送邮件至 [email protected] 联系我们。我们将及时核实并处理您的问题。