Superior plasmon absorption in iron-doped gold nanoparticles

文献信息

发布日期 2015-04-13
DOI 10.1039/C5NR00823A
影响因子 7.79
作者

Vincenzo Amendola, Rosalba Saija, Onofrio M. Maragò, Maria Antonia Iatì



摘要

Although the excitation of localized surface plasmons is associated with enhanced scattering and absorption of incoming photons, only the latter is relevant for the efficient conversion of light into heat. Here we show that the absorption cross section of gold nanoparticles is sensibly increased when iron is included in the lattice as a substitutional dopant, i.e. in a gold–iron nanoalloy. Such an increase is size and shape dependent, with the best performance observed in nanoshells where a 90–190% improvement is found in a size range that is crucial for practical applications. Our findings are unexpected according to the common belief and previous experimental observations that alloys of Au with transition metals show a depressed plasmonic response. These results are promising for the design of efficient plasmonic converters of light into heat and pave the way to more in-depth investigations of the plasmonic properties in noble metal nanoalloys.

来源期刊

Nanoscale

Nanoscale
CiteScore: 12.1
自引率: 5.2%
年发文量: 1681

Nanoscale is a high-impact international journal, publishing high-quality research across nanoscience and nanotechnology. Nanoscale publishes a full mix of research articles on experimental and theoretical work, including reviews, communications, and full papers. Highly interdisciplinary, Nanoscale appeals to scientists, researchers and professionals interested in nanoscience and nanotechnology, quantum materials and quantum technology, including the areas of physics, chemistry, biology, medicine, materials, energy/environment, information technology, detection science, healthcare and drug discovery, and electronics. For publication in Nanoscale, papers must report high-quality reproducible new work that will be of significant general interest to the journal's wide international readership. Nanoscale is a collaborative venture between the Royal Society of Chemistry Publishing and a leading nanoscience research centre, the National Center for Nanoscience and Technology (NCNST) in Beijing, China. image block The journal publishes weekly issues, complementing and building on the nano content already published across the Royal Society of Chemistry Publishing journal portfolio. Since its launch in late 2009, Nanoscale has established itself as a platform for high-quality, cross-community research that bridges the various disciplines involved with nanoscience and nanotechnology, publishing important research from leading international research groups.

推荐供应商

中国广州恒石进出口贸易有限公司
印度尼西亚Van Aroma
德国丁克尔伯格分析有限公司
墨西哥尤尼维克斯
英国IMTEX控制有限公司
中国东莞市合创新材料科技有限公司
中国连云港倍力达新材料有限公司
中国江苏万淇生物科技股份有限公司
德国ZIAG工厂工程有限公司
中国寿光市源美食品科技有限公司
免责声明
本页面提供的学术期刊信息仅供参考和研究使用。我们与任何期刊出版商均无关联,也不处理投稿事宜。如有投稿相关咨询,请直接联系相关期刊出版商。
如发现页面信息有误,请发送邮件至 [email protected] 联系我们。我们将及时核实并处理您的问题。