Dual-emission fluorescent sensor based on AIE organic nanoparticles and Au nanoclusters for the detection of mercury and melamine

文献信息

发布日期 2015-03-25
DOI 10.1039/C5NR00554J
影响因子 7.79
作者

Caixia Niu, Qiuling Liu, Zhehai Shang, Liu Zhao, Jin Ouyang



摘要

A novel dual-emission ratiometric fluorescence probe is designed and developed by linking two parts, positively charged aggregation-induced emission (AIE) organic fluorescence nanoparticles (OFNs) as the reference and negatively charged Au nanoclusters (Au NCs) as the response, by electrostatic attraction for the first time. This probe can be used for not only visual but quantitative determination of Hg2+ as well as melamine, because red fluorescence of Au NCs can be quenched by mercury ions and recovered by melamine, due to the strong affinity metallophilic Hg2+–Au interaction and stronger affinity Hg2+–N. During this process, the green fluorescence of AIE-OFNs remains constant owing to the protection of ε-polylysine (ε-Ply). In addition, the prepared dual-emission ratiometric fluorescence probe has good biocompatibility, indicating the potential of the probe in applications of biological imaging and detection. The results revealed that this dual-emission ratiometric fluorescence probe broadens the application of AIE-based organic fluorescent nanoparticles, and presents a new method to prepare more sensitive, biocompatible, and visual ratiometric fluorescent probes.

来源期刊

Nanoscale

Nanoscale
CiteScore: 12.1
自引率: 5.2%
年发文量: 1681

Nanoscale is a high-impact international journal, publishing high-quality research across nanoscience and nanotechnology. Nanoscale publishes a full mix of research articles on experimental and theoretical work, including reviews, communications, and full papers. Highly interdisciplinary, Nanoscale appeals to scientists, researchers and professionals interested in nanoscience and nanotechnology, quantum materials and quantum technology, including the areas of physics, chemistry, biology, medicine, materials, energy/environment, information technology, detection science, healthcare and drug discovery, and electronics. For publication in Nanoscale, papers must report high-quality reproducible new work that will be of significant general interest to the journal's wide international readership. Nanoscale is a collaborative venture between the Royal Society of Chemistry Publishing and a leading nanoscience research centre, the National Center for Nanoscience and Technology (NCNST) in Beijing, China. image block The journal publishes weekly issues, complementing and building on the nano content already published across the Royal Society of Chemistry Publishing journal portfolio. Since its launch in late 2009, Nanoscale has established itself as a platform for high-quality, cross-community research that bridges the various disciplines involved with nanoscience and nanotechnology, publishing important research from leading international research groups.

推荐供应商

德国GfL - Gesellschaft für Lärmbekämpfung mbH
中国江苏弘惠医药有限公司
中国浙江常山金雄有限公司
中国贵州德天精细化工
德国安格斯化学有限公司
德国岛津德国有限公司
德国明德克有限公司
瑞士Gerteis Maschinen + Processengineering AG
中国山东鲁西兽药股份有限公司
中国广州市耿达贸易有限公司
免责声明
本页面提供的学术期刊信息仅供参考和研究使用。我们与任何期刊出版商均无关联,也不处理投稿事宜。如有投稿相关咨询,请直接联系相关期刊出版商。
如发现页面信息有误,请发送邮件至 [email protected] 联系我们。我们将及时核实并处理您的问题。