Photoactivated plasmonic nanohybrid fibers with prolonged trapping of excited charge carriers for SERS analysis of biomolecules
文献情報
Arti Sharma, Tripti Ahuja, Jatin Yadav, Shubhangi Majumdar, Soumik Siddhanta
The quest to enhance Raman spectroscopic signals through the rational design of plasmonic substrates has enabled the detection and characterization of pharmaceutically important molecules with low scattering cross-sections, such as amino acids and proteins, and is helping in making forays into the diverse field of biomedical sciences. This work presents a simple strategy for synthesizing silver nanoparticles-incorporated alumina nanofibers (Ag–AlNFs) utilizing controlled microwave synthesis for enhancing the surface-enhanced Raman chemical enhancement factor through photo-induced charge accumulation at the plasmonic–dielectric interface. The plasmonic–dielectric fibers serve as excellent charge carrier trappers, as evident from the ultrafast transient absorption spectroscopy studies. Apart from chemical enhancement, the increase in electronic surface charge also enables the protein disulfide bonds to capture these electrons and form a transient disulfide electron adduct radical, which converts to free thiol radical on dissociation. This allows protein molecules to bind to the nanoparticle's surface with the favorable silver thiol bond leading to greater surface affinity and larger SERS enhancement. The proposed Ag–AlNFs represent a cost-effective material that can be potentially used to probe biological systems in a label-free manner by photoactivating the SERS substrate for obtaining higher enhancement factors.
関連文献
IF 6.367
A model-based comparison of Ru and Ni catalysts for the Sabatier reactionIF 6.367
Contents listIF 6.222
Front coverIF 6.843
A hollow neuronal carbon skeleton with ultrahigh pyridinic N content as a self-supporting potassium-ion battery anodeIF 6.367
PEST (political, environmental, social & technical) analysis of the development of the waste-to-energy anaerobic digestion industry in China as a representative for developing countriesIF 6.367
Non-aqueous neptunium and plutonium redox behaviour in THF – access to a rare Np(iii) synthetic precursorIF 6.222
Novel aqueous amine looping approach for the direct capture, conversion and storage of CO2 to produce magnesium carbonateIF 6.367
Catalytic depolymerization of alkali lignin in ionic liquids on Pt-supported La2O3–SO42−/ZrO2 catalystsIF 6.367
Solventless thermal crosslinked polymer protective layer for high stable lithium metal batteriesIF 6.367
掲載誌
Journal of Materials Chemistry B

Journal of Materials Chemistry A, B & C cover high quality studies across all fields of materials chemistry. The journals focus on those theoretical or experimental studies that report new understanding, applications, properties and synthesis of materials. The journals have a strong history of publishing quality reports of interest to interdisciplinary communities and providing an efficient and rigorous service through peer review and publication. The journals are led by an international team of Editors-in-Chief and Associate Editors who are all active researchers in their fields. Journal of Materials Chemistry A, B & C are separated by the intended application of the material studied. Broadly, applications in energy and sustainability are of interest to Journal of Materials Chemistry A, applications in biology and medicine are of interest to Journal of Materials Chemistry B, and applications in optical, magnetic and electronic devices are of interest to Journal of Materials Chemistry C. More than one Journal of Materials Chemistry journal may be suitable for certain fields and researchers are encouraged to submit their paper to the journal that they feel best fits for their particular article. Example topic areas within the scope of Journal of Materials Chemistry B are listed below. This list is neither exhaustive nor exclusive. Antifouling coatings Biocompatible materials Bioelectronics Bioimaging Biomimetics Biomineralisation Bionics Biosensors Diagnostics Drug delivery Gene delivery Immunobiology Nanomedicine Regenerative medicine & Tissue engineering Scaffolds Soft robotics Stem cells Therapeutic devices image block All articles published in Journal of Materials Chemistry B from 2019 onwards will be indexed in MEDLINE®. Articles that primarily focus on providing insight into the underlying science and performance of biomaterials within a biological environment are more suited to our companion journal, Biomaterials Science.