Precise determination of lead isotope ratios by MC-ICP-MS without matrix separation exemplified by unique samples of diverse origin and history
文献情報
Jakub Karasiński, Ewa Bulska, Andrii Tupys, Barbara Wagner
This study evaluates the feasibility of using the internal standard (IS) method and optimized regression model (ORM) to determine lead isotope ratios without separating Pb from many different types of matrices. The effect of typical interferents at increasing concentrations was investigated using model samples. We have demonstrated that Pb isotope ratio measurements without matrix separation give equally accurate and precise results as those obtained with matrix separation. Finally we used a new protocol to measure the isotope ratio of Pb in environmental, geological and archaeological samples with very limited availability (3 mg) and low lead content (30 mg kg−1). Such samples have so far been problematic for MC-ICP-MS isotopic analysis due to the difficulties with separating such small amounts of lead using ion exchange resins. Lead isotope ratios were measured without separation of lead from the sample using two protocols. In the first, the internal standard method was used as a means of calibration. In the second, the optimized regression model was used. In this case there were no statistically significant differences between the protocols compared. Both approaches gave statistically similar results. The protocol using IS is recommended as it is significantly simpler and less laborious and consumes lower volumes of sample solution. The protocol we developed can be applied to a wide range of samples (following some recommendations). To demonstrate the usefulness of the new procedure, we applied it to different types of samples containing lead at different concentrations. In particular, we focused on historical samples because their availability is very limited and collecting a sufficiently large sample is always a major problem. Where possible, we compared our results with literature values. The new protocol, by eliminating the sample preparation step, allowed us to measure about four times more samples per day (about 12–15) compared to the classical method (with Pb separation using ion exchange resins). We also present, for the first time, a new method for the non-destructive sampling of manuscripts for isotopic analysis, involving the extraction of lead from the object into indicator papers soaked in 4,7-diphenyl-1,10-phenanthroline.
関連文献
IF 6.222
Building microsphere–nanosheet structures in N-doped carbon to improve its performance in the oxygen reduction reaction and vanadium redox flow batteriesIF 6.367
Vapor-fed photoelectrolysis of water at 0.3 V using gas-diffusion photoanodes of SrTiO3 layersIF 6.367
Novel aqueous amine looping approach for the direct capture, conversion and storage of CO2 to produce magnesium carbonateIF 6.367
Transition-metal-free insertion reactions of alkynes into the C–N σ-bonds of imides: synthesis of substituted enamides or chromonesIF 6.222
Metal–organic frameworks: preparation and applications in highly efficient heterogeneous photocatalysisIF 6.367
Illuminating endosomal escape of polymorphic lipid nanoparticles that boost mRNA deliveryIF 6.843
Effective utilisation of waste cooking oil in a single-cylinder diesel engine using alumina nanoparticlesIF 6.367
Outstanding Reviewers for ChemComm in 2020IF 6.222
Nickel-containing N-doped carbon as effective electrocatalysts for the reduction of CO2 to CO in a continuous-flow electrolyzerIF 6.367
掲載誌
Journal of Analytical Atomic Spectrometry

The Journal of Analytical Atomic Spectrometry (JAAS) is the central journal for publishing innovative research on fundamentals, instrumentation, and methods in the determination, speciation and isotopic analysis of (trace) elements within all fields of application. This includes, but is not restricted to, the most recent progress, developments and achievements in all forms of atomic and elemental detection, isotope ratio determination, molecular analysis, plasma-based analysis and X-ray techniques. The journal welcomes full papers, communications, technical notes, critical and tutorial review articles, editorials, and comments, in addition to the Atomic Spectrometry Updates (ASU) literature reviews that are prepared by an expert panel. Submissions are welcome in the following areas, but note this list reflects the current scope and authors are strongly encouraged to contact the Editorial team if they believe that their work offers potentially new and emerging research relevant to the journal remit: Fundamental studies in the following. New and existing sources for atomic emission, absorption, fluorescence and mass spectrometry and those that provide both atomic and molecular information Sample introduction techniques for solids, liquids, gases Improvements in sensitivity, selectivity, precision, accuracy and/or robustness Isotope ratio measurements, including techniques for improving precision and mass bias correction Single channel and multichannel simultaneous detection systems Chemometrics, statistics, calibration techniques and internal standardisation Theoretical and numerical modelling of fundamental processes related to all of the above methodologies Novel or improved methodologies in areas of application including, but not limited to the following. Biosciences, including elemental, speciation and isotopic analysis in biological systems, immunoassays based on metal-labeled antibodies, bio-imaging, and nanoparticle toxicology Geochemistry Environmental science Materials science, including engineered nanoparticles and quantum dots Metrology, including reference materials Forensic analysis Food and agricultural sciences Energy Archaeometry Molecular analysis. Molecular sources for elemental and isotopic analysis Atomic sources for molecular analysis Atomic and molecular techniques simultaneously used for complementary chemical information All contributions are judged on originality and quality of scientific content, and appropriateness of length to content of new science.