A combined effect of fish-originated collagen peptides and caffeine on the cognitive function of sleep-deprived mice
文献情報
Hongkang Zhu, Shuang Bai, Wen Ma, He Qian, Peng Du
Refreshing beverages, consumed worldwide, commonly take advantage of caffeine's impacts on attention and motor performance. However, excessive long-term caffeine intake might disturb sleep/wake rhythms and exacerbate daily anxiety. Fish-originated collagen peptides (FCP) are of high nutrient value with stimulating, calming or relaxing effects, which could reduce the excitotoxicity of caffeine. This study aims to investigate two facets: (1) the combined effect of caffeine and FCP (namely C&F) on the cognitive function of sleep-deprived mice by different administration strategies with dose dependence (low and high dose) or time dependence (intervention in a day and prevention for a week); (2) the potential “microbiota–gut–brain” mechanism by which C&F improves sleep deprivation (SD)-induced cognitive impairments. Here, C57BL/6 mice were administered caffeine (10 or 20 mg per kg per bw) combined with FCP (100 or 200 mg per kg per bw) and were then subjected to 48 h SD. The open-field and Morris water maze tests were performed to evaluate the cognitive function and spatial learning capacities of mice. Our results indicated that the cognitive impairments of SD mice were significantly relieved to a different degree by treating C&F in a dose- and time-dependent manner. The pathological observation of the hippocampus indicated both intervention (time of a day) and prevention (time of a week) of the C&F protected brain tissue from SD-induced injuries. The accumulated pro-inflammatory neurometabolites and factors were significantly inhibited by C&F via the hypothalamus–hippocampal circuit. Furthermore, 16S rDNA analysis of colonic contents showed that the level of Lactobacillus murinus was significantly upregulated and that of Clostridia_UCG-014 was suppressed in the C&F group. The receiver operating characteristic (ROC) curve of Lactobacillus murinus indicated a certain diagnostic utility to distinguish C&F intervention (AUC = 0.52) or prevention (AUC = 0.68). Pathways of ko04622 (immune system) and ko00472 (metabolism processes) were significantly regulated by C&F in a time-dependent manner. Based on PICRUSt2 algorithm analysis, C&F might potentially regulate gut microbial functions through several metabolic pathways, including the RIG-I-like receptor signaling pathway and limonene and pinene degradation. In conclusion, C&F plays a key role in brain function and behavior, which could synergistically relieve cognitive impairments via the microbiota–gut–brain axis.
関連文献
IF 6.367
Non-aqueous neptunium and plutonium redox behaviour in THF – access to a rare Np(iii) synthetic precursorIF 6.222
Contents listIF 6.222
Synthesis and hydrogen evolving catalysis of a panchromatic photochemical molecular deviceIF 6.367
Synthesis and optical and electronic properties of one-dimensional sulfoxonium-based hybrid metal halide (CH3)3SOPbI3IF 6.222
Ultra-thin NiFeSe nanosheets as a highly efficient bifunctional electrocatalyst for overall water splittingIF 6.367
An aminophosphonate ester ligand-containing platinum(ii) complex induces potent immunogenic cell death in vitro and elicits effective anti-tumour immune responses in vivoIF 6.222
Surface structure-dependent electrocatalytic reduction of CO2 to C1 products on SnO2 catalystsIF 6.367
Triboelectric nanogenerators for a macro-scale blue energy harvesting and self-powered marine environmental monitoring systemIF 6.367
Selective production of monocyclic aromatic hydrocarbons from ex situ catalytic fast pyrolysis of pine over the HZSM-5 catalyst with calcium formate as a hydrogen sourceIF 6.367
掲載誌
Food & Function

Food & Function provides a unique venue for physicists, chemists, biochemists, nutritionists and other food scientists to publish novel, cutting-edge, original research focussing on food, its nutrients and their relation to human health and nutrition. We welcome research describing the: Physical properties and structure of food and how this relates to sensory perception and human health Biochemical and physiological actions of food components Interactions between foods, gut microbiota and human physiology Nutritional and biological evaluation of food Clinical and population studies using food or food components Development of biomarkers of food intake and effects on human health We also welcome systematic reviews and meta-analyses of existing studies in the literature, provided these are objective and scientifically valid Food in this context is defined as materials of plant, animal or mineral origin, which are consumed orally (by humans) for pleasure and to sustain growth and vital processes. Examples of research topics that are of interest to be published in Food & Function are: Chemistry and physics of food components and digestion processes Relationship between the physical properties/structure of food and nutrition and human health - for example, impact of food matrix or processing on nutrient release and uptake Molecular properties and physiological effects of food components (nutrients, fibres, essential micronutrients, phytochemicals, bioactives, food substitutes, novel ingredients, allergens, flavours and fragrances) Nutritional and health effects of food including bioavailability and metabolism assessment of food components (nutrients, micronutrients and other microconstituents) Efficacy and mechanisms of food constituents in the body - including biomarkers of intakes, exposure and effects Impacts of foods/food components on gut microorganisms and human physiology - For example impact of fermented foods Role of nutrition and diet in human disease prevention and development Cellular and molecular effects/mechanisms of food/food components image block The following types of research are not within the scope of Food & Function: Research relating to traditional herbal medicines, medicinal plants or active compounds extracted from such plants (materials that are primarily consumed as medicine, i.e. the intended purpose is primarily to treat, cure or prevent a non-deficiency disease) or relating to foods not recognised as human diet contributors Animal nutrition research that is not primarily designed as a model to benefit human nutrition (for example, studies of growth/accretion, heat stress, weaning, ruminant digestion, meat quality, etc.) Treatments administered by non-oral routes such as injection (subcutaneous, intramuscular, intraperitoneal, etc.), dermal/transdermal, rectal, inhalation, nasal, etc. Exceptions are when such routes of administration are used for mechanistic/control purposes in the experimental design Pharmacological/pharmaceutical approaches: Encapsulation, emulsification and/or pure controlled release of compounds or bioactives that do not come directly from edible foods, such as dietary supplements - these are better suited to a pharmaceutical journal In vitro or in vivo studies with poorly defined (insufficiently characterised) extracts and studies without appropriate controls will not be considered Cells studies not considering the metabolism of food components ingested – for example, irrelevant exposure of cells to compounds not present in the body after absorption Manuscripts with only a fully theoretical/bioinformatic approach and without appropriate support from analytical evidence will not be considered for publication Studies focussing solely on food engineering, preservation and sustainable technologies – these can be published in our companion journal Sustainable Food Technology Pure food analysis - these can be published in Analytical Methods