Essential role of CO coverage in CO2 hydrogenation over Pt(111)

文献情報

出版日 2023-09-25
DOI 10.1039/D3CY01134H
インパクトファクター 6.119
著者

Yongjie Xi, Jia Wang, Jinlei Li



要旨

Hydrogenation of CO2 to ethanol is a promising process among various CO2 valorization processes. However, this process is challenging due to the difficulty of steering the hydrogenation reaction towards C–C coupling while suppressing side reactions such as methane formation. In the present study, we performed a comprehensive mechanistic study of thermocatalytic CO2 hydrogenation to CH3CH2OH on Pt(111) and the competing pathways involving the formation of CH4 and CH3OH, revealing the critical role of CO surface coverage in affecting the reaction energy profiles. The otherwise infeasible production of CH4 and CH3CH2OH on Pt(111) is enabled by the adsorbed CO, generated during the hydrogenation of CO2. The calculated energy profiles on pristine Pt(111) suggest that the coverage of CO and atomic hydrogen will increase when the reaction proceeds, with CO being the dominant adsorbate. The equilibrium coverage can be reached when the coadsorption free energy of CO and H is maximized. The adsorption of CO on Pt(111) makes the coadsorbed H relatively positively charged, which is favorable for the H-assisted dehydroxylation of CHOH that produces CH, a key intermediate for the formation of CH3CH2OH via CH–CO coupling or CH4 through subsequent hydrogenation steps. The CH–CO coupling and CH hydrogenation are also facilitated by the increase of CO coverage. Importantly, the increased reaction exothermicity and the more delocalized electronic state of the CO carbon atom are responsible for the decrease of the CH–CO coupling energy barrier. At the equilibrium of coverage of CO and H on Pt(111), microkinetic modeling reveals that while CH4 is the dominant product, the selectivity to CH3CH2OH can be notably increased by strengthening the adsorption of CO. Our study reveals the multiple aspects of the CO coverage effect on CO2 hydrogenation, enriching the knowledge of CO2 hydrogenation to C1 and C2 products.

掲載誌

Catalysis Science & Technology

Catalysis Science & Technology
CiteScore: 5.91
自己引用率: 4.5%
年間論文数: 600

Catalysis Science & Technology is committed to publishing research reporting high-quality, cutting-edge developments across the catalysis community at large. The journal places equal focus on publications from the heterogeneous, homogeneous, thermo-, electro-, photo-, organo- and biocatalysis communities. Works published in the journal feature a balanced mix of fundamental, technology-oriented, experimental, computational, digital and data-driven original research, thus appealing to catalysis practitioners in both academic and industrial environments. Original research articles published in the journal must demonstrate new catalytic discoveries and/or methodological advances that represent a significant advance on previously published work, from the molecular to the process scales. We welcome rigorous research in a wide range of timely or emerging applications related to the environment, health, energy and materials. Catalysis Science & Technology publishes Communications, Articles, Reviews and Perspectives. More details regarding manuscript types may be found in the Information for Authors section.

おすすめサプライヤー

中国深圳市優品生物科技有限公司発売 Branch Office
スイスチェムゴオーガニック株式会社
ドイツLabortechnik Tasler GmbH (LTT)
ドイツNMI チュービンゲン大学自然科学医学研究所
ドイツWEVO-CHEMIE GmbH
中国揚中ウォッtonsジェミック株式会社
ドイツHochrein 測定技術
ドイツテスアップ
スイスEmile Egger&Cie SA
ドイツハートン · アラゲンテクニク GmbH
免責事項
このページに表示される学術雑誌情報は、参考および研究目的のみを目的としています。当社は雑誌出版社とは提携しておらず、投稿の取り扱いも行っておりません。出版に関するお問い合わせは、各雑誌出版社に直接ご連絡ください。
表示されている情報に誤りがある場合は、[email protected] までご連絡ください。迅速に確認し、対応いたします。