An antibacterial and healing-promoting collagen fibril constructed by the simultaneous strategy of fibril reconstitution and ε-polylysine anchoring for infected wound repair

文献情報

出版日 2023-09-22
DOI 10.1039/D3BM01181J
インパクトファクター 6.843
著者



要旨

The development of antibacterial dressings has attracted much attention to address the disordered wound healing caused by bacterial infection. Constructing dressings that have desirable antibacterial activity and could promote wound healing is important for infected wound repair. Inspired by the role of the key regulator collagen fibrils with D-periodic functional domains in the physiological wound healing process, we developed an antibacterial and wound healing-promoting collagen fibril with a structure highly similar to natural collagen in ECM and inherent antibacterial activity by the simultaneous strategy of fibril reconstitution and the antibacterial agent ε-polylysine (ε-PL) anchoring. Accompanied by the fibrillogenesis of collagen molecules, the anchorage of ε-PL into collagen fibrils was actualized through the formation of the covalent bond catalyzed by transglutaminase (TGase) between ε-PL and collagen. The collagen fibril possessed natural D-periodicity and achieved 20% ε-PL graft yield by co-assembling collagen/ε-PL mediated by 25 U g−1 TGase, which showed a satisfactory proliferation of L929 fibroblasts and sustained inhibition rates above 90% against E. coli and S. aureus. The rat S. aureus-infected dermal wound model further demonstrated that the reconstituted antibacterial collagen fibril visibly promoted re-epithelialization, new collagen deposition, and angiogenesis by down-regulating the inflammatory-relative gene IL-6 and up-regulating the relative activity factor expression of CD31, achieving accelerated infected wound healing with 61.89% ± 3.96% wound closure on postoperative day 7 and full closure on day 14.

掲載誌

Biomaterials Science

Biomaterials Science
CiteScore: 11.5
自己引用率: 3.4%
年間論文数: 492

Biomaterials Science is an international high impact journal exploring the science of biomaterials and their translation towards clinical use. Its scope encompasses new concepts in biomaterials design, studies into the interaction of biomaterials with the body, and the use of materials to answer fundamental biological questions. Papers do not necessarily need to report a new biomaterial but should provide novel insight into the biological applications of the biomaterial. Articles that primarily focus on demonstrating novel materials chemistry and bring a molecular picture to bear on a given material’s suitability as a biomaterial are more suited to our companion journal, Journal of Materials Chemistry B. Biomaterials Science publishes primary research and review-type articles in the following areas: molecular design of biomaterials, including translation of emerging chemistries to biomaterials science of cells and materials at the nanoscale and microscale materials as model systems for stem cell and human biology materials for tissue engineering and regenerative medicine (Nano)materials and (nano)systems for therapeutic delivery interactions at the biointerface biologically inspired and biomimetic materials, including bio-inspired self-assembly systems and cell-inspired synthetic tools next-generation biomaterials tools and methods

おすすめサプライヤー

中国ズッ إليンフロンティア化学科技有限公司
中国上海エイ让消费者引导活动,增加用户参与感和互动性。农バイオテクノロジーrtc有限公司
中国南京白敬宇製薬有限责任公司
中国深圳康宇达発光材料有限公司
中国湖北新徳晟材料科技有限公司
中国武汉武大弘元株式会社
ドイツGB-Chemie GmbH
アメリカ合衆国エレメンタル・サイエンティック
ドイツENGEMANN u. CO. int. Spedition GmbH und Co. KG
ドイツ​​Theion株式会社
免責事項
このページに表示される学術雑誌情報は、参考および研究目的のみを目的としています。当社は雑誌出版社とは提携しておらず、投稿の取り扱いも行っておりません。出版に関するお問い合わせは、各雑誌出版社に直接ご連絡ください。
表示されている情報に誤りがある場合は、[email protected] までご連絡ください。迅速に確認し、対応いたします。