Ordered assembly of non-planar vanadyl-tetraphenylporphyrins on ultra-thin iron oxide
文献情報
Guglielmo Albani, Luca Schio, Francesco Goto, Alberto Calloni, Alessio Orbelli Biroli, Alberto Bossi, Francesco Melone, Simona Achilli, Guido Fratesi, Carlo Zucchetti, Luca Floreano, Gianlorenzo Bussetti
Stabilizing ordered assemblies of molecules represents the first step towards the construction of molecular devices featuring hybrid (organic–inorganic) interfaces where molecules can be easily functionalized in view of specific applications. Molecular layers of planar metal-tetraphenylporphyrins (MTPP) grown on an ultrathin iron oxide [namely Fe(001)–p(1 × 1)O] show indeed a high degree of structural order. The generality of such a picture is tested by exploiting non-planar porphyrins, such as vanadyl-TPP (VOTPP). These molecules feature a VO2+ ion in their center, with the O atom protruding out of the plane of the porphyrin ring. In this work, by employing diffraction, photoemission and X-ray absorption, we prove that non-planar VOTPP can nevertheless form a square and ordered superstructure, where porphyrin molecules lie flat with respect to the underlying substrate. Ab initio density functional theory simulations are used to elucidate the VO bond orientation with respect to the iron substrate.
関連文献
IF 6.222
Enhanced power performance of an in situ sediment microbial fuel cell with steel-slag as the redox catalyst: I. electricity generationIF 6.367
Novel aqueous amine looping approach for the direct capture, conversion and storage of CO2 to produce magnesium carbonateIF 6.367
Tessellation strategy for the interfacial synthesis of an anthracene-based 2D polymer via [4+4]-photocycloadditionIF 6.222
Electrospun hydrogels for dynamic culture systems: advantages, progress, and opportunitiesIF 6.843
From Douglas fir to renewable H2-enriched syngas via ex situ catalytic pyrolysis over metal nanoparticles–nanocellulose derived carbon catalystsIF 6.367
Solventless thermal crosslinked polymer protective layer for high stable lithium metal batteriesIF 6.367
Boronic acid liposomes for cellular delivery and content release driven by carbohydrate binding‡IF 6.222
Illuminating endosomal escape of polymorphic lipid nanoparticles that boost mRNA deliveryIF 6.843
Front coverIF 6.843
掲載誌
Physical Chemistry Chemical Physics

Physical Chemistry Chemical Physics (PCCP) is an international journal co-owned by 19 physical chemistry and physics societies from around the world. This journal publishes original, cutting-edge research in physical chemistry, chemical physics and biophysical chemistry. To be suitable for publication in PCCP, articles must include significant innovation and/or insight into physical chemistry; this is the most important criterion that reviewers and Editors will judge against when evaluating submissions. The journal has a broad scope and welcomes contributions spanning experiment, theory, computation and data science. Topical coverage includes spectroscopy, dynamics, kinetics, statistical mechanics, thermodynamics, electrochemistry, catalysis, surface science, quantum mechanics, quantum computing and machine learning. Interdisciplinary research areas such as polymers and soft matter, materials, nanoscience, energy, surfaces/interfaces, and biophysical chemistry are welcomed if they demonstrate significant innovation and/or insight into physical chemistry. Joined experimental/theoretical studies are particularly appreciated when complementary and based on up-to-date approaches.