Near infrared light activation of an injectable whole-cell cancer vaccine for cancer immunoprophylaxis and immunotherapy

文献情報

出版日 2021-05-05
DOI 10.1039/D1BM00542A
インパクトファクター 6.843
著者

Fei Wang, Junbin Gao, Shuanghu Wang, Jiamiao Jiang, Yicheng Ye, Juanfeng Ou, Shuwen Liu, Fei Peng, Yingfeng Tu



要旨

Cancer vaccines play a key role in the prevention and treatment of early and recurrent tumors. Although they have been widely studied during the past few decades, designing an efficient and economical cancer vaccine is still challenging. Here, we propose an injectable live cell cancer vaccine (InLCCV) using live tumor cells as immunogenic sources for cancer immunoprophylaxis and immunotherapy. InLCCV is fabricated by loading live mouse breast cancer cells (4T1 cells), gold nanorods (GNRs), and super-low-dose lipopolysaccharide (LPS) into a biocompatible Pluronic F127 in situ hydrogel matrix. After in situ inactivation by the photothermal effect of GNRs upon near-infrared (NIR) laser irradiation, immunogenic cell death (ICD) of 4T1 cells is induced and tumor-associated antigens (TAAs) together with loaded LPS are released subsequently. Therefore, dendritic cells and macrophages are activated accordingly, further stimulating the systemic anti-tumor immune response. After vaccinating with InLCCV, the tumor-free percentage of the mice is 60% and the survival rate during the observation period reaches up to 80%. For lung metastasis, the metastatic foci are 3.9-fold less than those of the control group. The as-developed InLCCV shows much promise as a potential platform for breast cancer immunoprophylaxis and immunotherapy.

掲載誌

Biomaterials Science

Biomaterials Science
CiteScore: 11.5
自己引用率: 3.4%
年間論文数: 492

Biomaterials Science is an international high impact journal exploring the science of biomaterials and their translation towards clinical use. Its scope encompasses new concepts in biomaterials design, studies into the interaction of biomaterials with the body, and the use of materials to answer fundamental biological questions. Papers do not necessarily need to report a new biomaterial but should provide novel insight into the biological applications of the biomaterial. Articles that primarily focus on demonstrating novel materials chemistry and bring a molecular picture to bear on a given material’s suitability as a biomaterial are more suited to our companion journal, Journal of Materials Chemistry B. Biomaterials Science publishes primary research and review-type articles in the following areas: molecular design of biomaterials, including translation of emerging chemistries to biomaterials science of cells and materials at the nanoscale and microscale materials as model systems for stem cell and human biology materials for tissue engineering and regenerative medicine (Nano)materials and (nano)systems for therapeutic delivery interactions at the biointerface biologically inspired and biomimetic materials, including bio-inspired self-assembly systems and cell-inspired synthetic tools next-generation biomaterials tools and methods

おすすめサプライヤー

中国南京延乔科技有限公司
ドイツINTAS Science Imaging Instruments GmbH
ドイツGebrüder Schmitt GmbH
コロンビアコロンビア工業ガス会社(CRYOGAS)
中国ターパイ新方向化成品有限公司(元ターパイ
中国Beginshou Iwasu Kagaku Mondai Shasei Kanli K.K.
ドイツAlbert Handtmann Elteka GmbH & Co. KG
オーストリアWaagen Scheffknecht有限公司
中国Enlight City Kengei Seiri Co., Ltd.
ドイツ光学有限公司
免責事項
このページに表示される学術雑誌情報は、参考および研究目的のみを目的としています。当社は雑誌出版社とは提携しておらず、投稿の取り扱いも行っておりません。出版に関するお問い合わせは、各雑誌出版社に直接ご連絡ください。
表示されている情報に誤りがある場合は、[email protected] までご連絡ください。迅速に確認し、対応いたします。