Building microsphere–nanosheet structures in N-doped carbon to improve its performance in the oxygen reduction reaction and vanadium redox flow batteries

文献情報

出版日 2019-11-04
DOI 10.1039/C9SE00851A
インパクトファクター 6.367
著者

Baobing Huang, Yuchuan Liu, Miao Xia, Jiugen Qiu, Zailai Xie



要旨

Presented here is a facile, sustainable and green method for the synthesis of N-doped carbon microspheres/nanosheets via hydrothermal carbonization (HTC) of the selected bioprecursor guanosine. The morphology of such carbons presents a hierarchical microstructure consisting of carbon microspheres and carbon nanosheets with a relatively disordered but mainly sp2 hybridized graphitic structure. Control experiments indicate that the formation of carbon microspheres was mainly related to the HTC process of the ribose component in guanosine, while the carbon nanosheets likely originated because of the self-templating effect of the guanine component in guanosine. This kind of HTC product (Go-HTC-1000) properly compensates for the disadvantages of the ribose-based counterpart (such as a monotonously microporous structure and non-nitrogen doped nature) and the guanine-based counterpart (such as a low specific surface area and low HTC carbon yield), leading to the formation of a completely new carbon with in situ high-level nitrogen doping, moderately defective structure and developed hierarchically porous texture. Owing to such unique morphological and structural features, it is expected to be superior in several catalytic reactions. When representatively used as an electrocatalyst for the oxygen reduction reaction (ORR), it exhibits superior performance with a very positive half-wave potential of 0.850 V (vs. RHE) comparable to that of the Pt/C catalyst (0.855 V) and excellent stability. When serving as an electrode material for vanadium redox reflow batteries (VRFBs), it shows significantly improved performances in both positive and negative reactions compared to pristine graphite felt (GF), performing well at various current densities ranging from 100 mA cm−2 to 500 mA cm−2 and achieving high energy efficiency and good rate performance. The work is believed to inspire a new perspective for the facile but efficient fabrication of novel carbon-based materials with high added values.

掲載誌

Sustainable Energy & Fuels

Sustainable Energy & Fuels
CiteScore: 0
自己引用率: 0%
年間論文数: 0

おすすめサプライヤー

ドイツマシン · メッシャー
日本三菱化学株式会社
中国ジャンティ・インダストリーズ株式会社
中国シャープックスnikówブォイステクノロジーズ有限 Granite Response
ドイツナノロップ
中国鞍山市陸海化工有限公司
スイスカーボゲン AMCIS AG
中国溧阳市长青化工有限公司は有限責任会社です
中国南京イプイーダ科学技術発展有限公司
中国江西ベシタ実業有限公司
免責事項
このページに表示される学術雑誌情報は、参考および研究目的のみを目的としています。当社は雑誌出版社とは提携しておらず、投稿の取り扱いも行っておりません。出版に関するお問い合わせは、各雑誌出版社に直接ご連絡ください。
表示されている情報に誤りがある場合は、[email protected] までご連絡ください。迅速に確認し、対応いたします。