Measuring binding kinetics of aromatic thiolated molecules with nanoparticles via surface-enhanced Raman spectroscopy

文献情報

出版日 2015-04-13
DOI 10.1039/C5NR01006C
インパクトファクター 7.79
著者

Prabuddha Mukherjee, Catherine J. Murphy



要旨

Colloidal plasmonic nanomaterials, consisting of metals such as gold and silver, are excellent candidates for advanced optical probes and devices, but precise control over surface chemistry is essential for realizing their full potential. Coupling thiolated (R-SH) molecules to nanoprobe surfaces is a convenient and established route to tailor surface properties. The ability to dynamically probe and monitor the surface chemistry of nanoparticles in solution is essential for rapidly manufacturing spectroscopically tunable nanoparticles. In this study, we report the development of surface-enhanced Raman spectroscopy (SERS) as a method to monitor the kinetics of gold–thiolate bond formation on colloidal gold nanoparticles. A theoretical model combining SERS enhancement with the Beer–Lambert law is proposed to explain ensemble scattering and absorption effects in colloids during chemisorption. In order to maximize biological relevance and signal reproducibility, experiments used to validate the model focused on maintaining nanoparticle stability after the addition of water-soluble aromatic thiolated molecules. Our results indicate that ligand exchange on gold nanoparticles follow a first-order Langmuir adsorption model with rate constants on the order of 0.01 min−1. This study demonstrates an experimental spectroscopic method and theoretical model for monitoring binding kinetics that may prove useful for designing novel probes.

掲載誌

Nanoscale

Nanoscale
CiteScore: 12.1
自己引用率: 5.2%
年間論文数: 1681

Nanoscale is a high-impact international journal, publishing high-quality research across nanoscience and nanotechnology. Nanoscale publishes a full mix of research articles on experimental and theoretical work, including reviews, communications, and full papers. Highly interdisciplinary, Nanoscale appeals to scientists, researchers and professionals interested in nanoscience and nanotechnology, quantum materials and quantum technology, including the areas of physics, chemistry, biology, medicine, materials, energy/environment, information technology, detection science, healthcare and drug discovery, and electronics. For publication in Nanoscale, papers must report high-quality reproducible new work that will be of significant general interest to the journal's wide international readership. Nanoscale is a collaborative venture between the Royal Society of Chemistry Publishing and a leading nanoscience research centre, the National Center for Nanoscience and Technology (NCNST) in Beijing, China. image block The journal publishes weekly issues, complementing and building on the nano content already published across the Royal Society of Chemistry Publishing journal portfolio. Since its launch in late 2009, Nanoscale has established itself as a platform for high-quality, cross-community research that bridges the various disciplines involved with nanoscience and nanotechnology, publishing important research from leading international research groups.

おすすめサプライヤー

中国成都同創源医薬科技有限公司
ドイツSiemens Building Technologies GmbH & Co. oHG
中国ドイツ・ライコー・リミテッド北京代表处
中国上海晟铱バイオテクノロジーカンパニー
中国鎧碩化学工業販売有限公司
CE光学
ドイツXENOPS化学品有限公司
ドイツ島津ドイツ株式会社
中国弘創净油設備公司
ドイツカーンテクニクス GmbH & Co. KG
免責事項
このページに表示される学術雑誌情報は、参考および研究目的のみを目的としています。当社は雑誌出版社とは提携しておらず、投稿の取り扱いも行っておりません。出版に関するお問い合わせは、各雑誌出版社に直接ご連絡ください。
表示されている情報に誤りがある場合は、[email protected] までご連絡ください。迅速に確認し、対応いたします。