Reducing bacteria and macrophage density on nanophase hydroxyapatite coated onto titanium surfaces without releasing pharmaceutical agents

文献情報

出版日 2015-04-10
DOI 10.1039/C5NR00471C
インパクトファクター 7.79
著者

Garima Bhardwaj, Hilal Yazici



要旨

Reducing bacterial density on titanium implant surfaces has been a major concern because of the increasing number of nosocomial infections. Controlling the inflammatory response post implantation has also been an important issue for medical devices due to the detrimental effects of chronic inflammation on device performance. It has recently been demonstrated that manipulating medical device surface properties including chemistry, roughness and wettability can control both infection and inflammation. Here, we synthesized nanophase (that is, materials with one dimension in the nanoscale) hydroxyapatite coatings on titanium to reduce bacterial adhesion and inflammatory responses (as measured by macrophage functions) and compared such results to bare titanium and plasma sprayed hydroxyapatite titanium coated surfaces used clinically today. This approach is a pharmaceutical-free approach to inhibit infection and inflammation due to the detrimental side effects of any drug released in the body. Here, nanophase hydroxyapatite was synthesized in sizes ranging from 110–170 nm and was subsequently coated onto titanium samples using electrophoretic deposition. Results indicated that smaller nanoscale hydroxyapatite features on titanium surfaces alone decreased bacterial attachment in the presence of gram negative (P. aeruginosa), gram positive (S. aureus) and ampicillin resistant gram-negative (E. coli) bacteria as well as were able to control inflammatory responses; properties which should lead to their further investigation for improved medical applications.

掲載誌

Nanoscale

Nanoscale
CiteScore: 12.1
自己引用率: 5.2%
年間論文数: 1681

Nanoscale is a high-impact international journal, publishing high-quality research across nanoscience and nanotechnology. Nanoscale publishes a full mix of research articles on experimental and theoretical work, including reviews, communications, and full papers. Highly interdisciplinary, Nanoscale appeals to scientists, researchers and professionals interested in nanoscience and nanotechnology, quantum materials and quantum technology, including the areas of physics, chemistry, biology, medicine, materials, energy/environment, information technology, detection science, healthcare and drug discovery, and electronics. For publication in Nanoscale, papers must report high-quality reproducible new work that will be of significant general interest to the journal's wide international readership. Nanoscale is a collaborative venture between the Royal Society of Chemistry Publishing and a leading nanoscience research centre, the National Center for Nanoscience and Technology (NCNST) in Beijing, China. image block The journal publishes weekly issues, complementing and building on the nano content already published across the Royal Society of Chemistry Publishing journal portfolio. Since its launch in late 2009, Nanoscale has established itself as a platform for high-quality, cross-community research that bridges the various disciplines involved with nanoscience and nanotechnology, publishing important research from leading international research groups.

おすすめサプライヤー

中国天津トннаяファイン化工有限公司
中国浙江省ブライトゴールド銅工業株式会社
ドイツVerfahrenstechnik Schweitzer GmbH
メキシコQu Emica Vita、米国de C.V.社。
中国广州市耿達貿易有限公司
中国常州凯康生物科技有限公司
中国合肥新НОワバイオテクノロジー株式会社
中国深圳康宇达発光材料有限公司
ドイツロムベルガー機械工場
ドイツナノロップ
免責事項
このページに表示される学術雑誌情報は、参考および研究目的のみを目的としています。当社は雑誌出版社とは提携しておらず、投稿の取り扱いも行っておりません。出版に関するお問い合わせは、各雑誌出版社に直接ご連絡ください。
表示されている情報に誤りがある場合は、[email protected] までご連絡ください。迅速に確認し、対応いたします。