Cytotoxicity of arsenic-containing chemical warfare agent degradation products with metallomic approaches for metabolite analysis

文献情報

出版日 2008-11-18
DOI 10.1039/B816980B
インパクトファクター 0
著者

Alvaro Puga



要旨

The arsenic metallome in African Green Monkey kidney cells is probed by measuring cytotoxicity, cellular arsenic uptake and speciation studies on arsenic-containing chemical warfare agent degradation products (CWDPs) during cell uptake. Inorganic arsenic compounds and methylated species also were studied during cell uptake as a means of providing cytotoxicity information relative to the CWDPs. The degradation products used were phenylarsine oxide (PAO), phenylarsonic acid (PAA), diphenylarsinic acid (DPAA), triphenylarsine (TPA) and triphenylarsine oxide (TPAO). These are the warfare agent’s primary degradation products. The parent warfare agents (red agents) are diphenylarsine chloride (DA or referred to as Clark I) and diphenylarsine cyanide (DC or Clark II), sternutator agents, sneezing gases able to cause bronchial irritation. Cytotoxicity levels and cellular uptake were compared to those of inorganic species: sodium arsenite, NaAsO2 [As(III)], sodium arsenateNa2HAsO4 [As(V)] and methylated arsenicals such as dimethylarsinic acid (DMA) and methylarsonic acid (MMA). The arsenic uptake was demonstrated in an African Green Monkey kidney cell line, CV-1. Quantification of lactate dehydrogenase activityreleased from damaged/dying cells was then measured via an LDH assay. The purpose of this study is to initially investigate toxicity to cells when exposed to different arsenic containing compounds over different concentrations and time ranges from 3 h to 24 h. Furthermore, exposed cells were then analyzed for different arsenic species by high performance liquid chromatography (HPLC) with inductively coupled plasma mass spectrometry to isolate and speciate arsenic fractions followed by nanoLC electrospray ionization mass spectrometry to analyze the molecular level changes of the arsenic based degradation products in the kidney cells. Metabolic changes to the arsenic species were found, and interestingly, at the lowest uptake levels, cytotoxicities were generally higher for the chemical warfare agent degradation products than the inorganic arsenic species.

掲載誌

Metallomics

Metallomics
CiteScore: 7
自己引用率: 6.9%
年間論文数: 77

Metallomics publishes cutting-edge investigations aimed at elucidating the identification, distribution, dynamics, role and impact of metals and metalloids in biological systems. Studies that address the “what, where, when, how and why” of these inorganic elements in cells, tissues, organisms, and various environmental niches are welcome, especially those employing multidisciplinary approaches drawn from the analytical, bioinorganic, medicinal, environmental, biophysical, cell biology, plant biology and chemical biology communities. We are particularly interested in articles that enhance our chemical and/or physical understanding of the molecular mechanisms of metal-dependent life processes, and those that probe the common space between metallomics and other ‘omics approaches to uncover new insights into biological processes. Metallomics seeks to position itself at the forefront of those advances in analytical chemistry destined to clarify the enormous complexity of biological systems. As such, we particularly welcome those papers that outline cutting-edge analytical technologies, e.g., in the development and application of powerful new imaging, spectroscopic and mass spectrometric modalities. Work that describes new insights into metal speciation, trafficking and dynamics in complex systems or as a function of microenvironment are also strongly encouraged. Studies that examine the interconnectivity of metal-dependent processes with systems level responses relevant to organismal health or disease are also strongly encouraged, for example those that probe the effect of chemical exposure on metal homeostasis or the impact of metal-based drugs on cellular processes.

おすすめサプライヤー

中国岐阜宝冶チタンニッケル製造有限责任公司
中国江苏常隆化工有限公司
中国DYMATIC化学公司
中国佛山市安你心香精香料有限公司
中国上海カーンメディカルテクノロジーカンパニー
ドイツ光学有限公司
ドイツマシン · メッシャー
ドイツソノテック GmbH
中国湖北強興化工有限公司
ドイツmentec GmbH
免責事項
このページに表示される学術雑誌情報は、参考および研究目的のみを目的としています。当社は雑誌出版社とは提携しておらず、投稿の取り扱いも行っておりません。出版に関するお問い合わせは、各雑誌出版社に直接ご連絡ください。
表示されている情報に誤りがある場合は、[email protected] までご連絡ください。迅速に確認し、対応いたします。