An electrospray/inductively coupled plasma dual-source time-of-flight mass spectrometer for rapid metallomic and speciation analysis: instrument design

文献情報

出版日 2008-12-02
DOI 10.1039/B816732J
インパクトファクター 0
著者

Duane A. Rogers, Steven J. Ray, Gary M. Hieftje



要旨

A time-of-flight mass spectrometer (TOFMS), which employs inductively coupled plasma (ICP) and electrospray ionization (ESI) sources simultaneously, has been designed, constructed, and evaluated for comprehensive elemental speciation analysis. The simultaneous operation of both sources with a single mass spectrometer is an improvement over existing techniques. The mass analyzer shares a third-stage vacuum system, extraction region, acceleration region, field-free region, and two-stage reflectron between both sources. Most of the other components, such as first and second-stage vacuum systems, pre-extraction ion optics, microchannel plate detectors, and data acquisition are independent, to provide the greatest degree of flexibility in source operation and signal optimization. A detailed description is given of the design and optimization of the orthogonal acceleration and spontaneous drift geometry, energy discrimination, and the reflectron and preliminary performance data are presented.

掲載誌

Metallomics

Metallomics
CiteScore: 7
自己引用率: 6.9%
年間論文数: 77

Metallomics publishes cutting-edge investigations aimed at elucidating the identification, distribution, dynamics, role and impact of metals and metalloids in biological systems. Studies that address the “what, where, when, how and why” of these inorganic elements in cells, tissues, organisms, and various environmental niches are welcome, especially those employing multidisciplinary approaches drawn from the analytical, bioinorganic, medicinal, environmental, biophysical, cell biology, plant biology and chemical biology communities. We are particularly interested in articles that enhance our chemical and/or physical understanding of the molecular mechanisms of metal-dependent life processes, and those that probe the common space between metallomics and other ‘omics approaches to uncover new insights into biological processes. Metallomics seeks to position itself at the forefront of those advances in analytical chemistry destined to clarify the enormous complexity of biological systems. As such, we particularly welcome those papers that outline cutting-edge analytical technologies, e.g., in the development and application of powerful new imaging, spectroscopic and mass spectrometric modalities. Work that describes new insights into metal speciation, trafficking and dynamics in complex systems or as a function of microenvironment are also strongly encouraged. Studies that examine the interconnectivity of metal-dependent processes with systems level responses relevant to organismal health or disease are also strongly encouraged, for example those that probe the effect of chemical exposure on metal homeostasis or the impact of metal-based drugs on cellular processes.

おすすめサプライヤー

中国広州旭帆有限
中国newline新乡瑞誠科技股份有限公司newline
スイスガルヴァノ・ウリマン AG
中国陕西缔都医薬化工有限公司
スイスEmile Egger&Cie SA
ドイツMCI - Miritz Citrus Ingredients GmbH
中国西安サンスタッド洗浄設備有限公司
ドイツ島津ドイツ株式会社
ドイツEdelstahlservice Sulz GmbH
中国山東ケミコ新材料有限公司
免責事項
このページに表示される学術雑誌情報は、参考および研究目的のみを目的としています。当社は雑誌出版社とは提携しておらず、投稿の取り扱いも行っておりません。出版に関するお問い合わせは、各雑誌出版社に直接ご連絡ください。
表示されている情報に誤りがある場合は、[email protected] までご連絡ください。迅速に確認し、対応いたします。