Quantitative elemental bio-imaging of Mn, Fe, Cu and Zn in 6-hydroxydopamine induced Parkinsonism mouse models

文献情報

出版日 2008-11-18
DOI 10.1039/B816188G
インパクトファクター 0
著者

Dominic Hare, Brian Reedy, Rudolf Grimm, Simon Wilkins, Irene Volitakis, Jessica L George, Robert A Cherny, Ashley I Bush, David I Finkelstein, Philip Doble



要旨

This study demonstrates the application of quantitative elemental bio-imaging for the determination of the distribution Cu, Mn, Fe and Zn in Parkinsonism mouse model brains. Elevated concentrations of these metals within the substantia nigra (SN) are suspected to play a role on the development of Parkinson’s disease. Elemental bio-imaging employs laser ablation inductively coupled mass spectrometry (LA-ICP-MS) to construct images of trace element distribution. Quantitative data was produced by ablating the standard tissue sections and recording the mean signal intensity calibrated against multi level matrix matched tissue standards. The concentrations of Fe within the substantia nigra of the lesioned animals increased significantly when compared against control animals. Furthermore, the data was compared against solution nebulisation ICP-MS in which the whole substantia nigra was excised. The trends were the same for both methods; however the elemental bio-imaging method returned significantly higher concentrations. This was caused by dilution from inclusion of surrounding tissue of the SN during the excision procedure.

掲載誌

Metallomics

Metallomics
CiteScore: 7
自己引用率: 6.9%
年間論文数: 77

Metallomics publishes cutting-edge investigations aimed at elucidating the identification, distribution, dynamics, role and impact of metals and metalloids in biological systems. Studies that address the “what, where, when, how and why” of these inorganic elements in cells, tissues, organisms, and various environmental niches are welcome, especially those employing multidisciplinary approaches drawn from the analytical, bioinorganic, medicinal, environmental, biophysical, cell biology, plant biology and chemical biology communities. We are particularly interested in articles that enhance our chemical and/or physical understanding of the molecular mechanisms of metal-dependent life processes, and those that probe the common space between metallomics and other ‘omics approaches to uncover new insights into biological processes. Metallomics seeks to position itself at the forefront of those advances in analytical chemistry destined to clarify the enormous complexity of biological systems. As such, we particularly welcome those papers that outline cutting-edge analytical technologies, e.g., in the development and application of powerful new imaging, spectroscopic and mass spectrometric modalities. Work that describes new insights into metal speciation, trafficking and dynamics in complex systems or as a function of microenvironment are also strongly encouraged. Studies that examine the interconnectivity of metal-dependent processes with systems level responses relevant to organismal health or disease are also strongly encouraged, for example those that probe the effect of chemical exposure on metal homeostasis or the impact of metal-based drugs on cellular processes.

おすすめサプライヤー

中国浙江車頭製薬有限公司
中国Enlight City Kengei Seiri Co., Ltd.
中国邹平县天興化工有限公司
スペインInilab, S. L.
中国Depthseng Dengnu Longbang Xincai Gongsi
中国湖南ナシャン電子科技有限公司
中国山东京衛製薬有限公司
エルサルバドルビジネス&エージェント
スイスEmbionテクノロジー株式会社
イギリスRedd&Whyte株式会社
免責事項
このページに表示される学術雑誌情報は、参考および研究目的のみを目的としています。当社は雑誌出版社とは提携しておらず、投稿の取り扱いも行っておりません。出版に関するお問い合わせは、各雑誌出版社に直接ご連絡ください。
表示されている情報に誤りがある場合は、[email protected] までご連絡ください。迅速に確認し、対応いたします。