Ceramics International
基本情報
Ceramics International covers the science of advanced ceramic materials. The journal encourages contributions that demonstrate how an understanding of the basic chemical and physical phenomena may direct materials design and stimulate ideas for new or improved processing techniques, in order to obtain materials with desired structural features and properties. Ceramics International covers oxide and non-oxide ceramics, functional glasses, glass ceramics, amorphous inorganic non-metallic materials (and their combinations with metal and organic materials), in the form of particulates, dense or porous bodies, thin/thick films and laminated, graded and composite structures. Process related topics such as ceramic-ceramic joints or joining ceramics with dissimilar materials, as well as surface finishing and conditioning are also covered. Besides traditional processing techniques, manufacturing routes of interest include innovative procedures benefiting from externally applied stresses, electromagnetic fields and energetic beams, as well as top-down and self-assembly nanotechnology approaches. In addition, the journal welcomes submissions on bio-inspired and bio-enabled materials designs, experimentally validated multi scale modelling and simulation for materials design, and the use of the most advanced chemical and physical characterization techniques of structure, properties and behaviour. Technologically relevant low-dimensional systems are a particular focus of Ceramics International. These include 0, 1 and 2-D nanomaterials (also covering CNTs, graphene and related materials, and diamond-like carbons), their nanocomposites, as well as nano-hybrids and hierarchical multifunctional nanostructures that might integrate molecular, biological and electronic components. Ceramics International is particularly keen to attract papers which deal with fundamental scientific aspects that are relevant to the development of the whole range of advanced ceramics including e.g. phase equilibria and transformations, reactivity, transport processes, thermodynamic and electronic properties, as well as quantum effects in low dimensional materials. Priority materials and areas of interest are: Advanced ceramics and composites for civil, military and industrial applications at room and moderate temperatures - High and ultrahigh temperature structural ceramics and composites for use in extreme environments; Electroceramics such as dielectric and microwave ceramics, ferroelectrics, piezoelectrics, pyroelectrics, thermoelectrics, ferroelastics; magnetic, multiferroic, semiconducting and fast ion-conducting ceramics; high Tc superconductors, topological insulators; Optical ceramics including luminescent and chromogenic materials, transparent conducting and semiconducting ceramics, electro-optical, magneto-optical and laser materials, inorganic optical fibers, plasmonic structures and electromagnetic metamaterials; Ceramics for nuclear fission, fusion and nuclear waste management technologies; Bioinert and bioactive ceramics for the full range of medical applications, including functional nanoparticles, composite materials and hybrid hierarchical nanostructures for tissue engineering, delivery systems, bio imaging and neural interfaces.
CiteScore
分野 | ランク | パーセンタイル |
---|---|---|
Materials ScienceSurfaces, Coatings and Films |
19 / 132 | 85% |
ジャーナル統計
投稿情報
収録タイプ:
関連論文
Efficient one-pot synthesis of alkyl levulinate from xylose with an integrated dehydration/transfer-hydrogenation/alcoholysis process
Mengmeng Wang, Xueying Gao, Liang He, Junhua Zhang
DOI: 10.1039/C9SE00982E
From Douglas fir to renewable H2-enriched syngas via ex situ catalytic pyrolysis over metal nanoparticles–nanocellulose derived carbon catalysts
Hanwu Lei, Chenxi Wang, Moriko Qian, Elmar Villota, Wendy Mateo
DOI: 10.1039/C9SE00860H
An overview of latest advances in exploring bioactive peptide hydrogels for neural tissue engineering
Pooja Sharma, Vijay Kumar Pal, Sangita Roy
DOI: 10.1039/D0BM02049D
Permselective ion electrosorption of subnanometer pores at high molar strength enables capacitive deionization of saline water
Luca Cervini
DOI: 10.1039/C9SE00996E
Tessellation strategy for the interfacial synthesis of an anthracene-based 2D polymer via [4+4]-photocycloaddition
Renzeng Chen, Danbo Wang, Wenbo Hao, Feng Shao, Yingjie Zhao
DOI: 10.1039/D1CC02179F
Carbon and carbon composites obtained using deep eutectic solvents and aqueous dilutions thereof
Gaspar Carrasco-Huertas, Rafael J. Jiménez-Riobóo, María Concepción Gutiérrez, María Luisa Ferrer, Francisco del Monte
DOI: 10.1039/D0CC00681E
Microscopic insights into long-range 1D ordering in a dense semi-disordered molecular overlayer
Ryan T. Hannagan, Isaac Onyango, Amanda Larson, E. Charles H. Sykes
DOI: 10.1039/D1CC01574E
Synthesis of aviation fuel from bio-derived isophorone
Courtney Ford Ryan, Cameron M. Moore, Juan H. Leal, Troy A. Semelsberger, Jenny K. Banh, Junqing Zhu, Charles S. McEnally, Lisa D. Pfefferle, Andrew D. Sutton
DOI: 10.1039/C9SE01014A
An environmentally friendly natural polymer as a universal interfacial modifier for fullerene and non-fullerene polymer solar cells
Xiaojing Wang, Shuwang Yi, Zhicai He, Xinhua Ouyang, Hong-Bin Wu, Weiguo Zhu, Bin Zhang, Yong Cao
DOI: 10.1039/C9SE01079C
A new neodymium–phosphine compound for supercapacitors with long-term cycling stability
Xiaoyu Li, Huimin Chen, Chenyu Yang, Yafeng Li
DOI: 10.1039/D1CC00650A
